• 제목/요약/키워드: fault crossings

검색결과 4건 처리시간 0.018초

Strain demand prediction method for buried X80 steel pipelines crossing oblique-reverse faults

  • Liu, Xiaoben;Zhang, Hong;Gu, Xiaoting;Chen, Yanfei;Xia, Mengying;Wu, Kai
    • Earthquakes and Structures
    • /
    • 제12권3호
    • /
    • pp.321-332
    • /
    • 2017
  • The reverse fault is a dangerous geological hazard faced by buried steel pipelines. Permanent ground deformation along the fault trace will induce large compressive strain leading to buckling failure of the pipe. A hybrid pipe-shell element based numerical model programed by INP code supported by ABAQUS solver was proposed in this study to explore the strain performance of buried X80 steel pipeline under reverse fault displacement. Accuracy of the numerical model was validated by previous full scale experimental results. Based on this model, parametric analysis was conducted to study the effects of four main kinds of parameters, e.g., pipe parameters, fault parameters, load parameter and soil property parameters, on the strain demand. Based on 2340 peak strain results of various combinations of design parameters, a semi-empirical model for strain demand prediction of X80 pipeline at reverse fault crossings was proposed. In general, reverse faults encountered by pipelines are involved in 3D oblique reverse faults, which can be considered as a combination of reverse fault and strike-slip fault. So a compressive strain demand estimation procedure for X80 pipeline crossing oblique-reverse faults was proposed by combining the presented semi-empirical model and the previous one for compression strike-slip fault (Liu 2016). Accuracy and efficiency of this proposed method was validated by fifteen design cases faced by the Second West to East Gas pipeline. The proposed method can be directly applied to the strain based design of X80 steel pipeline crossing oblique-reverse faults, with much higher efficiency than common numerical models.

Response of steel pipeline crossing strike-slip fault in clayey soils by nonlinear analysis method

  • Hadi Khanbabazadeh;Ahmet Can Mert
    • Geomechanics and Engineering
    • /
    • 제34권4호
    • /
    • pp.409-424
    • /
    • 2023
  • Response of the pipeline crossing fault is considered as the large strain problem. Proper estimation of the pipeline response plays important role in mitigation studies. In this study, an advanced continuum modeling including material non-linearity in large strain deformations, hardening/softening soil behavior and soil-pipeline interaction is applied. Through the application of a fully nonlinear analysis based on an explicit finite difference method, the mechanics of the pipeline behavior and its interaction with soil under large strains is presented in more detail. To make the results useful in oil and gas engineering works, a continuous pipeline of two steel grades buried in two clayey soil types with four different crossing angles of 30°, 45°, 70° and 90° with respect to the pipeline axis have been considered. The results are presented as the fault movement corresponding to different damage limit states. It was seen that the maximum affected pipeline length is about 20 meters for the studied conditions. Also, the affected length around the fault cutting plane is asymmetric with about 35% and 65% at the fault moving and stationary block, respectively. Local buckling is the dominant damage state for greater crossing angle of 90° with the fault displacement varying from 0.4 m to 0.55 m. While the tensile strain limit is the main damage state at the crossing angles of 70° and 45°, the cross-sectional flattening limit becomes the main damage state at the smaller 30° crossing angles. Compared to the stiff clayey soil, the fault movement resulting 3% tensile strain limit reach up to 40% in soft clayey soil. Also, it was seen that the effect of the pipeline internal pressure reaches up to about 40% compared to non-pressurized condition for some cases.

철도건널목 위험도 정량평가 방법론 적용성 연구 (Feasibility Study on the Risk Quantification Methodology of Railway Level Crossings)

  • 강현국;김만철;박주남;왕종배
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.605-613
    • /
    • 2007
  • 위험 분석을 위한 방법론은 결정론적 정성적 접근과 확률론적 정량적 접근으로 대별될 수 있는데, 보다 현실적으로 다양한 요인을 적극적으로 고려할 수 있는 정량적 방법론은 효율성이 높으나 모델의 복잡성과 자료수집의 어려움을 극복하는 것이 필요하다. 본 연구에서는 복잡한 모델링을 체계적으로 수행하여 철도 건널목에서의 사고로 인한 위험도를 정량적으로 평가하기 위한 방법론을 도출하고 기본적인 적용성 연구를 통해, 정량평가 방법론의 유용성을 입증하고 추후 철도 통합 위험도 평가 시스템의 개발에 반영하는 목적으로 수행되었다. 제안된 위험도 평가를 위한 방법론은 다음과 같이 요약될 수 있다. 먼저 Preliminary Hazard Analysis 결과로부터 철도 사고에 대한 위험요인 목록을 작성하고 사건수목(Event Tree)을 이용하여 위험요인별로 사고 시나리오를 전개한다. 사건수목중 사건수목 분기확률을 정량화하기위해 보조논리를 필요로 하는 경우에 대해서 고장수목(Fault Tree)을 작성한다. 작성된 사건수목과 고장수목에 정량화를 위해 필요한 평가 자료를 입력하고 통합 정량화 방법론을 적용하여 최종 정량화를 수행한다. 정량화된 결과에 사고 상황을 고려한 해석을 수행하고 필요하다면 민감도 분석이나 불확실성 분석이 수행한다. 본 연구에서는 이러한 분석 방법론을 전국 철도건널목 사고 분석에 시범 적용하였다. 또한 2005년 국내 철도 건널목에서 발생한 사고자료를 이용하여 시범적인 정량화를 수행하여 그 적용성을 보였다.

  • PDF

Strain demand prediction of buried steel pipeline at strike-slip fault crossings: A surrogate model approach

  • Xie, Junyao;Zhang, Lu;Zheng, Qian;Liu, Xiaoben;Dubljevic, Stevan;Zhang, Hong
    • Earthquakes and Structures
    • /
    • 제20권1호
    • /
    • pp.109-122
    • /
    • 2021
  • Significant progress in the oil and gas industry advances the application of pipeline into an intelligent era, which poses rigorous requirements on pipeline safety, reliability, and maintainability, especially when crossing seismic zones. In general, strike-slip faults are prone to induce large deformation leading to local buckling and global rupture eventually. To evaluate the performance and safety of pipelines in this situation, numerical simulations are proved to be a relatively accurate and reliable technique based on the built-in physical models and advanced grid technology. However, the computational cost is prohibitive, so one has to wait for a long time to attain a calculation result for complex large-scale pipelines. In this manuscript, an efficient and accurate surrogate model based on machine learning is proposed for strain demand prediction of buried X80 pipelines subjected to strike-slip faults. Specifically, the support vector regression model serves as a surrogate model to learn the high-dimensional nonlinear relationship which maps multiple input variables, including pipe geometries, internal pressures, and strike-slip displacements, to output variables (namely tensile strains and compressive strains). The effectiveness and efficiency of the proposed method are validated by numerical studies considering different effects caused by structural sizes, internal pressure, and strike-slip movements.