• Title/Summary/Keyword: fault area

Search Result 802, Processing Time 0.029 seconds

A study on the application of HTS-FCL in Korean Customer Power System (국내 수용가계통에서의 초전도한류기 적용가능성 검토)

  • Lee Seung-Ryul;Kim Jong-Yul;Yoon Jae-Young
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.3
    • /
    • pp.44-49
    • /
    • 2004
  • As the load density of KEOCO system is higher, the fault current can be much higher than SCC(Short Circuit Capacity) of circuit breaker. Fault current exceeding the rating of circuit breaker is a very serious problem in high density load area, which can threaten the stability of whole power system. Even though there are several alternatives to reduce fault current, as the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductivity Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. This study presents the application of 154kV HTS-FCL in Korean power system.

A Model-Based Fault Detection and Diagnosis Methodology for Cooling Tower

  • Ahn, Byung-Cheon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.3
    • /
    • pp.63-71
    • /
    • 2001
  • This paper presents a model-based method for detecting and diagnosing some faults in the cooling tower of healing, ventilating, and air-conditioning systems. A simple model for the cooling tower is employed. Faults in cooling tower operation are detected through the deviations in the values of system characteristic parameters such as the heat transfer coefficient-area product, the tower approach, the tower effectiveness, and fan power. Three distinct faults are considered: cooling tower inlet water temperature sensor fault, cooling tower pump fault, and cooling tower fan fault. As a result, most values of the system characteristics parameter variations due to a fault are much higher or lower than the values without faults. This allows the faults in a cooling tower to be detected easily using above methods. The diagnostic rules for the faults were also developed through investigating the changes in the different parameter due to each faults.

  • PDF

Dynamic Redundancy-based Fault-Recovery Scheme for Reliable CGRA-based Multi-Core Architecture

  • Kim, Yoonjin;Sohn, Seungyeon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.615-628
    • /
    • 2015
  • CGRA (Coarse-Grained Reconfigurable Architecture) based multi-core architecture can be considered as a suitable solution for the fault-tolerant computing. However, there have been a few research projects based on fault-tolerant CGRA without exploiting the strengths of CGRA as well as their works are limited to single CGRA. Therefore, in this paper, we propose two approaches to enable exploiting the inherent redundancy and reconfigurability of the multi-CGRA for fault-recovery. One is a resilient inter-CGRA fabric that is ring-based sharing fabric (RSF) with minimal interconnection overhead. Another is a novel intra/inter-CGRA reconfiguration technique on RSF for maximizing utilization of the resources when faults occur. Experimental results show that the proposed approaches achieve up to 94% faulty recoverability with reducing area/delay/power by up to 15%/28.6%/31% when compared with completely connected fabric (CCF).

A Fault-Tolerant CAN Protocol (Fault-Tolerant CAN 프로토콜)

  • Lee, Jin-Sun;Choi, Kyung-Hee;Chung, Ki-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.1359-1362
    • /
    • 2005
  • 본 논문은 차량 및 공장 자동화 분야에서 널리 쓰이고 있는 Controller Area Network 의 안정성 보장을 위한 Fault-Tolerant 프로토콜을 제안한다. 제안된 Fault-Tolerant 프로토콜은 실시간 Fault-Tolerant 시스템을 대상으로 한 Time-Triggered 프로토콜의 중복 메커니즘을 이용하며 event-triggered 방식인 CAN 에 알맞게 변형하여 이용한다. 본 논문의 프로토콜은 Atmel 사의 AT89C51CC03 을 이용하여 구현하여 가능성을 검증 하였다. 제시한 프로토콜을 이용하여 엔진과 X-by-Wire, ABS 분야와 같은 안정성-중시 시스템에 좀더 높은 안정성을 부여할 수 있을 것이다.

  • PDF

Feasibility Study on the Application of 154kV HTS-FCL in Korean Power System (국내 실계통에서의 154kV 초전도한류기 계통적용 가능성 검토)

  • Lee Seung Ryul;Kim Jong-Yul;Choi Heung-Kwan;Yoon Jae Young
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.12
    • /
    • pp.661-669
    • /
    • 2004
  • As the load density of KEPCO system is higher, the fault current can be much higher than SCC(Short Circuit Capacity) of circuit breaker. Fault current exceeding the rating of circuit breaker is a very serious problem in high density load area, which can threaten the stability of whole power system. Even though there are several alternatives to reduce fault current, as the superconductivity technology has been developed, the HTS-FCL (High Temperature Superconductivity Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. This study presents the application plication of 154kV HTS-FCL in Korean power system.

Geotechnical Characteristics of Cut Slope in Tertiary Jungja Bain, Ulsan area (울산지역 제3기 정자분지의 도로사면 지반특성)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Lee, Jung-Yup;Rhee, Jong-Hyun;Park, Sung-Kyu;Kim, Kwan-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.107-112
    • /
    • 2005
  • Road is built continuously along with development of industry and cut slope is happened necessarily in road construction. Geoengineers are executing cut slope stability analysis considering various cut slope condition such as topography, geology, hydraulic condition and so on. The Tertiary Jungja Basin is located in the southeastern coastal area of the Korea Peninsula. Jungja Basin area is created by geotectonic movement of the plate after Early Miocene epoch. The northwestern and southwestern boundary of the basin is fault zone. The Basement rock is hornfels (Ulsan Formation). Basin-fills consist of extrusive volcanic rock(Tangsa Andesites), unconsolidated fluviatile conglomerate(Kangdong Formation) and shallow brackish-water sandstone(Sinhyun Formation). The characteristics of cut slopes in this area is different with cut slopes in the other site. Soil layers in this area is unconsolidated sediments and is not formed the weathering and erosion of the rock. So, the depth of soil layer is very thick. Faults of this area are northwest-southeast and northeast-southwest direction. Expandible clay mineral as smectite, chlorite et al. detected from fault gouge using XRD. Therefore, Jungja Basin area must consider the characteristics of the faults and soil layers thickness necessarily cut slopes stability analysis.

  • PDF

Geological Structures of the Taebaek-Hajang Area, Samcheog Coalfield, Korea (삼척탄전(三陟炭田) 태백(太白)-하장지역(下長地域)의 지질구조(地質構造))

  • Kim, Jeong Hwan;Kim, Young Seok
    • Economic and Environmental Geology
    • /
    • v.24 no.1
    • /
    • pp.27-41
    • /
    • 1991
  • Taebaeg-Hajang area, in the northern part of Taebaeg city, comprises of Paleozoic sedimentary sequences and Cretaceous intrusive and volcanoclastic rocks. The rocks in the area are affected by folding and thrusting during the Bulgugsa Orogeny. In Taebaeg area, geologic structures related with thrust movement are dominant. These structures are small scale of klippe and window, back thrust, and asymmetric folds related with blind thrust. Tear fault or compartment fault due to differential movement of thrust sheets have "en echelon" arrays. Small scale transpression effects occurred along these faults and produced the flower structure. According to strain measurement using by ooids from limestone and quartz grains from quartzite, strain ratios are very low and strain ellipsoids are apparent oblate type.

  • PDF

A study on the optimal reinforcement area for excavation of a small cross-section shield TBM tunnel in fault fracture zone through parameter analysis (매개변수 분석을 통한 단층파쇄대의 소단면 쉴드 TBM 터널 굴착 시 최적 보강영역 연구)

  • Kang, Byung-Yun;Park, Hyung Keun;Cha, Jae-Hoon;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.261-275
    • /
    • 2020
  • When excavating a small cross-section tunnel in a fault fracture zone using the shield TBM method, there is a high possibility of excessive convergence and collapse. Appropriate ground reinforcement is required to minimize construction cost loss and trouble due to a fault fracture zone. In this study, the optimal reinforcement area was suggested and the surrounding ground behavior was investigated through numerical analysis using MIDAS GTS NX (Ver. 280). For the parameters, the width of the fault fracture zone, the existence of fault gouge, and the groundwater level and depth of cover were applied. As a result, when there is not fault gouge, the convergence and ground settlement are satisfied the standard when applying ground reinforcement by up to 0.5D. And, due to the high permeability coefficient, it is judged that it is necessary to apply 0.5D reinforcement. There is a fault gouge, it was possible to secure stability when applying ground reinforcement between the entire fault fracture zone from the top of the tunnel to 0.5D. And, because the groundwater discharge occurred within the standard value due to the fault gouge, reinforcement was unnecessary.

A Study of Stability Evaluation for Tunnel at the Fault Zone Crossing (단층대를 통과하는 터널의 안정성확보에 관한 연구)

  • 박인준;최정환;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.105-112
    • /
    • 2001
  • The purpose of this study is to assess the stability of tunnel for a high speed railway crossing the fault zone. The area where the tunnel crossed the fault zone can be unstable during construction and operation. Geotechnical investigations have been conducted to determine an optimum excavation method by obtaining the material properties around the fault zone and to check the stability of the tunnel. For the numerical analysis, the FLAC, numerical analysis code based on finite difference method, was utilized to analyze the behavior of the fault at three points having typical ground conditions. Based on the results of numerical analysis, the combinations of compaction grouting and LW grouting were determined as suitable methods for pre-excavation Improvement of the ground surrounding the tunnel opening. In conclusion, the stability of the tunnel construction for the high speed railway within the fault zone may be obtained by adopting the optimum excavation method and the reinforcement method. The numerical analysis based on FLAC program contains errors caused by assumptions used in numerical analysis, therefore constant monitoring with respect to the change of ground condition and groundwater is highly recommended to minimize the numerical error and the possibility of damage to tunnel.

  • PDF

Fault Plane Solutions of the Recent Earthquakes in the Northern Part of the Korean Peninsula

  • Lee, Min Jeong;Kyung, Jai Bok;Chi, Heon Cheol
    • Journal of the Korean earth science society
    • /
    • v.35 no.5
    • /
    • pp.354-361
    • /
    • 2014
  • Fault plane solutions in North Korea and the northern part of the Yellow Sea ($37.5^{\circ}N-40.5^{\circ}N$, $124.5^{\circ}E-128.5^{\circ}E$) was studied for the earthquakes that occurred from November, 2008 to May, 2013. The analysis was based on the data collected from seismic networks in Korea and China. Fault plane solutions were obtained from P and SH wave polarities and SH/P amplitude ratioes. Most earthquakes exhibited predominantly strike-slip fault characteristics with NNE-SSW or WNW-ESE nodal planes. The P-axes trends are mainly NE-SW or ENE-WSW direction in the northern part of the Yellow Sea and inland area of North Korea except some areas in the Hwanghae province. Fault plane solutions and main axis of stress field in the study region were similar to those observed in the southern part of the Korean Peninsula.