• Title/Summary/Keyword: fatty acid oxidation

Search Result 503, Processing Time 0.033 seconds

Two-Stage Microbial Biotransformation for the Production of 6-Dodecen-4-olide (Butter Lactone) from Plant Oils Containing Unsaturated Fatty Acids (불포화 지방산 함유 식물유를 이용한 천연 6-Dodecen-4-oilde (Butter Lactone) 생산을 위한 2-Stage Microbial Biotransformation)

  • Kwon, Soon-Hyang;Kim, Kyoung-Ju;Kim, Yang-Hwi Augustine
    • Korean Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.130-136
    • /
    • 2007
  • Natural 6-dodecen-4-olide (Butte lactone) was produced from plant oils containing high unsaturated fatty acids via two-stage microbial hiotransformation. After unsaturated fatty acids were liberated from plant oil by microbial lipase, these were converted to optically active hydroxyl fatty acid (HFA) by hydroxylation reaction of Pseudomonas sp. NRRLB-2994. When safflower oil containing >75% unsaturated fatty acid, linoleoic acid wasused, Pseudomonas sp. produced 8g/L of 10-hydroxy-12(z)-octadecanoicacid with average of 39.2% bioconversion efficiency during 48 hr biotransformation period. The recovered 10-hydroxy-12-octadecanoic acid was further bioconverted to 4-hydroxy-6-dodecenoic acid via partial ${\beta}-oxidation$ by Yarriowia lipolytica ATCC34088. 4-hydroxy-6-dodecenoic acid in culture was lactonized by lowering pH to 4.0 using $4N\;H_{2}SO_{4}$ and heating for 5 min to 6-dodecen-4-olide (Butter lactone). Natural 6-dodecen-4-olide had characteristic aroma properties when compared to 6-dodecan-4-oilde (dodecalactone) and 4-decen-4-olide (decalactone).

A Study on the Fatty Acid Composition and Malonaldehyde of Dried Yellow Carbina (굴비의 지방산조성과 Malonaldehyde 함량변화에 관한 연구)

  • Yum, Cho-Ae
    • Journal of Nutrition and Health
    • /
    • v.13 no.3
    • /
    • pp.145-149
    • /
    • 1980
  • To study the rancidity of dried yellow carlbina oil by oxidation during the storage period general properties of the oil and composition of its fatty acid were analysed quantitatively with gas chromatography The results indicated that I) The dried yellow carbina oil was involved in drying oil of high degree of unsaturation with IV 138 and consisted of higher-fatty acid with SV 194. 2) The composition of the fatty acids were composed of 18 fatty acids involving 6 unknown fatty acids and comprised poly-unsaturated fatty acid with $C_{18}^{:3}\:and\:C_{22}^{:5}$ 3) After three morths storage of dried yellow carbina the content of malonaldehyde was about 12mg/kg in its exterior part, but 6mg/kg in interior part, which indicateing that the degree of rancidity of poly unsaturated glycerides in exterior part of carbina were two times as much as that of interior part.

  • PDF

A Study on the Fatty acid Composition and Malonaldehyde of Dried File Fish (쥐포의 지방산 조성과 Malonaldehyde 함량에 관한 연구)

  • 엽조애
    • Journal of the Korean Home Economics Association
    • /
    • v.18 no.3
    • /
    • pp.13-19
    • /
    • 1980
  • To study the rancidity of dried file fish oil by Oxidation during the storage period, general properties of the oil and composition of its fatty acids were analysed qumtitatively with gas-chromatography. The results indicated that; 1) The dried file fish oil was involved in drying oil of heigh degree of unsaturation with IV 158., and consisted of higher-fatty acid with SV 190. 2) The composition of the fatty acids were composed of 18 fatty acids involving 6 unknown fatty acids, and polyunsaturated fatty acid with docosapentaenoic acid(20 weight%). 3) Changes of malonaldehyde content during the storage of dried file fish were about 5.0 mg/kg after 10day, 3.4 mg/kg after 40 days.

  • PDF

Changes of Fatty Acid Composition and Oxidation Stability of Edible Oils with Frying Number of French Fried Potatoes (감자튀김 횟수에 따른 식용유지의 산화 안정성 및 지방산 조성 변화)

  • Lee, Jin-Won;Park, Jang-Woo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.7
    • /
    • pp.1011-1017
    • /
    • 2010
  • Sunflower oil (SO), canola oil (CO) and frying oil (FO) were used as edible oils in this study. According to the frying number, the extracted oils from French fried potatoes were used as experimental samples. To investigate the relationship between the change of fatty acid composition and the stability of the lipid oxidation during frying, the changes of fatty acid composition and the degree of the lipid oxidation of samples were examined. Acid values and peroxide values were evaluated as the degree of lipid oxidation. The acid values of CO and FO were increased with the frying times. The increased acid values of CO and FO were 0.20 and 0.17 on the basis of initial value at 30 times, respectively, but the acid value of SO was lower than those of CO and FO. The peroxide values of the samples were not increased uniformly with the frying number. As the number of frying times was increased, the fatty acid composition of SO and FO were changed. Namely, the oleic acid composition was decreased, whereas the linoleic acid composition was increased with the number of frying times. The benzo(a)pyrene contents of the extracted oils from French fried potatoes did not change regularly as the frying times was increased.

An Essential Role of the N-Terminal Region of ACSL1 in Linking Free Fatty Acids to Mitochondrial β-Oxidation in C2C12 Myotubes

  • Nan, Jinyan;Lee, Ji Seon;Lee, Seung-Ah;Lee, Dong-Sup;Park, Kyong Soo;Chung, Sung Soo
    • Molecules and Cells
    • /
    • v.44 no.9
    • /
    • pp.637-646
    • /
    • 2021
  • Free fatty acids are converted to acyl-CoA by long-chain acyl-CoA synthetases (ACSLs) before entering into metabolic pathways for lipid biosynthesis or degradation. ACSL family members have highly conserved amino acid sequences except for their N-terminal regions. Several reports have shown that ACSL1, among the ACSLs, is located in mitochondria and mainly leads fatty acids to the β-oxidation pathway in various cell types. In this study, we investigated how ACSL1 was localized in mitochondria and whether ACSL1 overexpression affected fatty acid oxidation (FAO) rates in C2C12 myotubes. We generated an ACSL1 mutant in which the N-terminal 100 amino acids were deleted and compared its localization and function with those of the ACSL1 wild type. We found that ACSL1 adjoined the outer membrane of mitochondria through interaction of its N-terminal region with carnitine palmitoyltransferase-1b (CPT1b) in C2C12 myotubes. In addition, overexpressed ACSL1, but not the ACSL1 mutant, increased FAO, and ameliorated palmitate-induced insulin resistance in C2C12 myotubes. These results suggested that targeting of ACSL1 to mitochondria is essential in increasing FAO in myotubes, which can reduce insulin resistance in obesity and related metabolic disorders.

Enzyme Activities Related to Lipid Metabolism in the Liver and Adipose Tissue of Tsaiya Ducks under Fasting and Ad libitum Feeding Conditions

  • Lien, Tu-Fa;Jan, Der-Fang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.3
    • /
    • pp.403-408
    • /
    • 2003
  • The study investigated the lipid metabolism of Tsaiya ducks under fasting and ad libitum feeding conditions. Sixty Tsaiya ducks in their growing period (8-12 wk-old) and sixty Tsaiya ducks in their laying period (26-30 wk-old, 10-14 weeks after the onset of laying) were randomly divided into ad libitum feeding and 3-day fasting groups. The activities of lipid metabolism related enzymes were determined. Experimental results indicated that fasting depressed the activities of lipogenesis related enzymes such as fatty acid synthetase and NADP-malic dehydrogenase in both periods (p<0.05). Fasting also increased the activities of liver fatty acid $\beta$-oxidation enzymes (p<0.05). However, the activities of lipoprotein lipase in adipose tissue, heart and ovarian follicle in both periods and the hormone-sensitive lipase of adipose tissue in the growing period were decreased by fasting (p<0.01).

수분 stress에 대한 식물의 반응과 내건성

  • 권기환
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1985.08b
    • /
    • pp.83-96
    • /
    • 1985
  • cDNAs for long- and short-chain acyl-CoA oxidases in fatty acid $\beta$-oxidation were isolated and were characterized their enzymatical and molecular properties. Both oxidases were exclusively localized in glyoxysomes, indicating that glyoxysomes can completely metabolize fatty acids to acyl-CoA by their cooperative action. In order to clarify the regulatory mechanisms underlying degradation of storage oil, we tried to obtain glyoxysome-deficient mutants of Arabidopsis. We screened 2,4-dichlorophenoxybutyric acid (2,4-DB) mutants of Arabidopsis which have defects in glyoxysomal fatty acid $\beta$-oxidation. Four mutants can be classified as carrying alleles at three independent loci, which we designated pedl, ped2, and ped3, respectively (where ped stands for peroxisome defective). The characteristics of these ped mutants are described.

  • PDF

Mitochondrial fatty acid metabolism in acute kidney injury

  • Jang, Hee-Seong;Padanilam, Babu J.
    • Journal of Medicine and Life Science
    • /
    • v.15 no.2
    • /
    • pp.37-41
    • /
    • 2018
  • Mitochondrial injury in renal tubule has been recognized as a major contributor in acute kidney injury (AKI) pathogenesis. Ischemic insult, nephrotoxin, endotoxin and contrast medium destroy mitochondrial structure and function as well as their biogenesis and dynamics, especially in renal proximal tubule, to elicit ATP depletion. Mitochondrial fatty acid ${\beta}$-oxidation (FAO) is the preferred source of ATP in the kidney, and its impairment is a critical factor in AKI pathogenesis. This review explores current knowledge of mitochondrial dysfunction and energy depletion in AKI and prospective views on developing therapeutic strategies targeting mitochondrial dysfunction in AKI.

MaoC Mediated Biosynthesis of Medium-chain-length Polyhydroxyalkanoates in Recombinant Escherichia coli from Fatty Acid (재조합 대장균에서 MaoC를 이용한 지방산으로부터의 중간사슬길이 폴리하이드록시알칸산 생산 연구)

  • Park, Si Jae;Lee, Seung Hwan;Oh, Young Hoon;Lee, Sang Yup
    • KSBB Journal
    • /
    • v.29 no.4
    • /
    • pp.244-249
    • /
    • 2014
  • Biosynthesis pathway of medium-chain-length (MCL) polyhydroxyalkanoates (PHA) from fatty acid ${\beta}$-oxidation pathway was constructed in recombinant Escherichia coli by introducing the Pseudomonas sp. 61-3 PHA synthase gene (phaC2) and the maoC genes from Pseudomonas putida, Sinorhizobium meliloti, and Ralstonia eutropha. The metabolic link between fatty acid ${\beta}$-oxidation pathway and PHA biosynthesis pathway was constructed by MaoC, which is homologous to P. aeruginosa (R)-specific enoyl-CoA hydratase (PhaJ1). When the E. coli W3110 strains expressing the phaC2 gene and one of the maoC genes from P. putida, Sinorhizobium meliloti, and Ralstonia eutropha were cultured in LB medium containing 2 g/L of sodium decanoate as a carbon source, MCL-PHA that mainly consists of 3-hydroxyhexanoate (3HHx), 3-hydroxyoctanoate (3HO) and 3-hydroxydecanoate (3HD), was produced. The monomer composition of PHA and PHA contents varied depending on MaoC employed for the production of PHA. The highest PHA content of 18.7 wt% was achieved in recombinant E. coli W3110 expressing the phaC2 gene and the P. putida maoC gene. These results suggest that MCL-PHA biosynthesis pathway can be constructed in recombinant E. coli strains from the b-oxidation pathway by employing MaoC able to supply (R)-3-hydroxyacyl-CoA, the substrate of PHA synthase.

Effect of Lipoxygenase on the Oxidation of Rainbow Trout Lipid in Model system (모델시스템에 있어서 무지개 송어 지방질의 산화에 대한 Lipoxygenase의 영향)

  • Kim, Hae-Gyoung;Um, Su-Hyon;Cheigh, Hong-Sik
    • Journal of Life Science
    • /
    • v.5 no.2
    • /
    • pp.14-14
    • /
    • 1995
  • The effect of lipoxygenase (LOX) on the oxidation and co-oxidation of lipid fraction was studied in the model system of rainbow trout. For the reaction in model system 1 g of lipid fraction and 50mL of enzyme extract(LOX, 140 unit in 50mL phosphate buffer solution at pH 7,4)), which were obtained from rainbow trout, were homoginized in the presence of Tween 20 and kept at 23$\circ$C for 3 days. The activity of LOX was decreased to 43% of initial level during the reaction in the model system. The initial composition of rainbow trout lipid was showed to be consisted of trigliceride(TG;82%) and free fatty acid(FFA;0.1%), while this converted to 59% of TG and 20% of FIFA, respectively after reaction in model system. Change of fatty acid composition was also observed and the content of linoleic acid, one of the major fatte acids, was decreased to 13% from 54% in the content of total fatty acids after reaction. The carotenoids in rainbow trout were composed of 0.4% $\alpha$-carotene, 1.6% $\beta$ -carotene, 80% canthaxanthin, 7% lutein and 11% zeaxanthin, thus the canthaxanthin was the major component. This canthaxanthin was the most degraded carotenoid by lipoxygenase catalyzed co-oxidation during the reaction. On the other hand the tocopherol isomers found in the rainbow trout were $\alpha$ and $\beta$ -tocopherol, and $\alpha$-tocopherol had a higher degradation rate by the lipoxygenase catalyzed co-oxidation than of $\beta$-tocopherol in the reaction of model system.