• Title/Summary/Keyword: fatty acid methyl esters

Search Result 100, Processing Time 0.028 seconds

Fungal Production of Single Cell Oil Using Untreated Copra Cake and Evaluation of Its Fuel Properties for Biodiesel

  • Khot, Mahesh;Gupta, Rohini;Barve, Kadambari;Zinjarde, Smita;Govindwar, Sanjay;RaviKumar, Ameeta
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.4
    • /
    • pp.459-463
    • /
    • 2015
  • This study evaluated the microbial conversion of coconut oil waste, a major agro-residue in tropical countries, into single cell oil (SCO) feedstock for biodiesel production. Copra cake was used as a low-cost renewable substrate without any prior chemical or enzymatic pretreatment for submerged growth of an oleaginous tropical mangrove fungus, Aspergillus terreus IBB M1. The SCO extracted from fermented biomass was converted into fatty acid methyl esters (FAMEs) by transesterification and evaluated on the basis of fatty acid profiles and key fuel properties for biodiesel. The fungus produced a biomass (8.2 g/l) yielding 257 mg/g copra cake SCO with ~98% FAMEs. The FAMEs were mainly composed of saturated methyl esters (61.2%) of medium-chain fatty acids (C12-C18) with methyl oleate (C18:1; 16.57%) and methyl linoleate (C18:2; 19.97%) making up the unsaturated content. A higher content of both saturated FAMEs and methyl oleate along with the absence of polyunsaturated FAMEs with ≥4 double bonds is expected to impart good fuel quality. This was evident from the predicted and experimentally determined key fuel properties of FAMEs (density, kinematic viscosity, iodine value, acid number, cetane number), which were in accordance with the international (ASTM D6751, EN 14214) and national (IS 15607) biodiesel standards, suggesting their suitability as a biodiesel fuel. The low cost, renewable nature, and easy availability of copra cake, its conversion into SCO without any thermochemical pretreatment, and pelleted fungal growth facilitating easier downstream processing by simple filtration make this process cost effective and environmentally favorable.

Preparation and Antifoaming Properties of Long Chain Fatty Acid Methyl Esters (고급지방산 메틸 에스테르류의 합성 및 소포특성)

  • Park, Jong-Kwon;Kim, A-Ram;Hwang, Jun-Bae;Jeong, Noh-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.72-77
    • /
    • 2015
  • In this study, anti-foaming agents of a fatty acid methyl esters was synthesized and confirmed by FT-IR and $^1H-NMR$ spectroscopy. Synthesized material of characteristic of -C=O group having a $1740cm^{-1}$ and -C-O group $1175cm^{-1}$ peak by using FT-IR, and it was confirmed that k. Surface tensions were measured by surface tensiometer CBVP-43. Their surface tension values was 17.7 to 21 dyne/cm. Anti-foaming abilities in the SLS solution was measured through the Ross-Miles method. Performance of the 4 type of anti-foaming agent was determined and the best anti-foaming agent was prepared using stearic acid methyl.

Effects of Free Alkali and Moisture on Sucrose Polyesters Synthesis (유리 알카리 및 수분이 sucrose polyesters 합성에 미치는 영향)

  • Chung, Ha-Yull;Kim, Suk-Ju;Yoon, Sung-Woo;Yoon, Hee-Nam;Kong, Un-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.247-250
    • /
    • 1992
  • Effects of free alkali and moisture on sucrose polyesters (SPE)-possible non calorie fat substitute-synthesis were investigated using a model system composed of sodium oleate, sucrose, potassium carbonate and methyl oleate. Trace amounts of free alkali in sodium oleate were found to interefere with SPE synthesis. When free alkali content in sodium oleate was varied gradually from 0% to 5%(w/w), the yield of SPE production was reduced from 92% to 45.5%. The moisture absorbed in sodium oleate, sucrose and potassium carbonate during storage also interefered with SPE synthesis. The yield (92%) of SPE production with dried ($105^{\circ}C$.6 hrs) reactants and catalysts was higher than that (89%) of SPE production with non-dried. Soybean oil fatty acid sodium soaps (FASS) not containing free alkali could be manufactured with slightly less than molar ratio of sodium hydroxide to soybean oil fatty acid methyl esters (FAME). Practically, 91.7% yield of soybean oil SPE production was outcomed by minimizing free alkali and moisture which were remaining in sucrose, potassium carbonate, soybean oil FASS and soybean oil FAME.

  • PDF

Gas Chromatographic Method for Analysis of Fatty Acids in Milk Fat with a Single Injection

  • Hwang, Keum-Taek;Shin, Min-Kyeong
    • Preventive Nutrition and Food Science
    • /
    • v.11 no.3
    • /
    • pp.253-256
    • /
    • 2006
  • The purpose of this study was to develop a gas chromatographic (GC) method to analyze fatty acids in milk fat with a single injection. The single-injection GC method we developed for analyzing fatty acid composition can separate a wide range of fatty acid methyl esters from butyric acid to docosahexaenoic acid. It separated 6 isomers of 18:1 (cis-6, cis-9, cis-11, trans-6, trans-9 and trans-11), 4 isomers of 18:2 (cis-9-cis-12, trans-9-trans-12, cis-9-trans-12 and trans-9-cis-12), and 4 isomers of conjugated 18:2 (cis-9- trans-11, trans-9-cis-11, cis-10-trans-12 and trans-10-cis-12).

Linkage Between Biodegradation of Polycyclic Aromatic Hydrocarbons and Phospholipid Profiles in Soil Isolates

  • Nam, Kyoung-Phile;Moon, Hee-Sun;Kim, Jae-Young;Kukor, Jerome-J.
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.77-83
    • /
    • 2002
  • A bacterial consortium capable of utilizing a variety of polycyclic aromatic hydrocarbons has been isolated from a former manufactured gas plant site. The consortium consisted of four members including Arthrobacter sp., Burkholderia sp., Ochrobacterium sp., and Alcaligenes sp., which were identified and characterized by the patterns of fatty acid methyl esters (FAME analysis) and carbon source utilization (BIOLOG system). With the individual members, the biodegradation characteristics of aromatic hydrocarbons depending on different growth substrates were determined. FAME analyses demonstrated that microbial fatty acid profiles changed to significant extents in response to different carbon sources, and hence, such shift profiles may be informative to characterize the biodegradation potential of a bacterium or microbial community.

Phytochemical and Antioxidant Activity of Spathodea campanulata P. Beauvois. Growing in Egypt

  • Nazif, Naglaa M.
    • Natural Product Sciences
    • /
    • v.13 no.1
    • /
    • pp.11-16
    • /
    • 2007
  • Alcoholic extract of Spathodea campanulata P. aerial parts, and two of the isolated fractions from celite column showed strong antioxidant activity (92, 94 & 89% RSA, Radical Scavenging Activity). Phytochemical investigation of chloroform/EtOAc faction of this column led to the isolation of phenolic acids, caffiec acid (1), and ferulic acid (2), fraction EtOAc/MeOH on further fractionation afforded 3 Flavonoids, kampferol 3-O-glucoside (3), quercetin 3-methyl ether (4) and 8-methoxy kampferol 3-O-glucoside (5). The isolated constituents were identified by co chromatography with authentic samples, TLC, PC., UV, MS and $^1H-NMR$. Also the lipoidal matter of the plant was studied. The unsaponifiable matter was found to be mixture of hydrocarbons from $(C_{14}-C_{28})$, cholesterol, campasterol, stigmasterol, and ${\alpha}-amyrin$. Fatty acid methyl esters were found to contain 12 fatty acids. The fatty acids containing $C_{18}$ farmed ca.65% of the total mixture.

Studies on the Synthesis of Nonionic Surfactants (III). Kinetics of the Synthesis of Sucrose Esters (비이온성 계면활성제의 합성에 관한 연구 (제3보). 슈크로오스에스테르의 합성에 관한 동력학적 고찰)

  • Ki Dae Nam;Joo Hwan Sohn
    • Journal of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.283-290
    • /
    • 1981
  • The reaction rates for the transesterification reaction were measured on the excess sucrose with the five fatty acid methyl ester systems such as methyl laurate, methyl myristate, methyl palmitate, methyl stearate and methyl oleate at temperature range of $50^{\circ}C$ to $90^{\circ}C$ in N,N-dimethylformamide solvent and potassium carbonate as a catalyst. Their activation parameters as well as rate constants were calculated from these measurements. And these reactions were found to be pseudo-first order and depended mainly on the structural changes in fatty acid residue of methyl esters. Also their reactions were found to be of enthalpy-controlled, which were disfavored in the order of methyl laurate, methyl myristate, methyl palmitate, methyl oleate and methyl stearate. Correspondingly their activation energies were 9.3, 9.9, 10.3, 10.9 and 11.1 kcal/mole, respectively.

  • PDF

Self-cleaning Surface Coatings of Perfluorinated Additives with Resin and Their Surface Properties

  • Kim, Y.W.;Chung, K.;Lee, E.A.;Seo, Y.G.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.143-144
    • /
    • 2002
  • A series of alcohols with perfluorinated segments $F(CF_2)_m(CH_2)_n-OH$, with m=8, 10 and n=4, 6, 10, were synthesized. First, the alcohols were reacted with fatty acid to produce several esters $(F(CF_2)_m(CH_2)-OOC-R$ with m=8, 10 and n=2, 4, 8,) containing perfluoro group by condensation reaction, and characterized by FT-IR, GC, and surface tension. The esters were soluble in ethyl ether, toluene, hexane, ethyl acetate, chloroform, and acetone, but insoluble in methyl alcohol, ethyl alcohol and isopropyl alcohol. Preliminary experiments on 1,2-dichloroethane solutions showed a remarkable decrease of surface tension upon addition of the esters. Also, the esters films ranged from 100 to $122^{\circ}$, depending on the structure of fatty acid esters. As the separate experiment, the water-repellency of coated paper and cotton was evaluated. As a result, the water droplet dropped in surface was not permeated for two weeks.

  • PDF

Analysis of Cellular Fatty Acid Methyl Esters (FAMEs) for the Identification of Bacillus anthracis (균체 지방산 분석을 이용한 Bacillus anthracis의 동정)

  • Kim, Won-Yong;Song, Tae-Wook;Song, Mi-Ok;Nam, Ji-Yeon;Park, Chul-Min;Kim, Ki-Jung;Chung, Sang-In;Choi, Chul-Soon
    • The Journal of the Korean Society for Microbiology
    • /
    • v.35 no.1
    • /
    • pp.31-40
    • /
    • 2000
  • Bacillus anthracis, the etiological agent of anthrax has been classified into the Bacillus subgroup I with B. cereus, B. mycoides and B. thuringiensis based on morphological and DNA similarity. DNA studies have further indicated that these species have very AT-rich genomes and high homology, indeed it has been proposed that these four sub-species be recognized as members of the one species. Several methods have been developed to obtain good differentiation between these species. However, none of these methods provides the means for an absolutely correct differntiation. The analysis of fatty acid methyl esters (FAMEs) was employed as a quick, simple and reliable method for the identification of 21 B. anthracis strains and closley related strains. The most significant differences were found between B. anthracis and B. anthracis closely related strains in FAMEs profiles. All tested strains of B. anthracis had a branched fatty acid C17:1 Anteiso A, whereas the fraction of unsaturated fatty acid Iso C17:1 w10c was found in B. anthracis closely related strains. By UPGMA clustering analysis of FAMEs profiles, all of the tested strains were classified into two clusters defined at Euclidian distance value of 24.5. The tested strains of B. anthracis were clustered together including Bacillus sp. Kyungjoo 3. However, the isolates of B. anthracis closely related spp. Rho, S10A, 11R1, CAU9910, CAU9911, CAU9912 and CAU9913 were clustered with the other group. On the basis of these results, isolates of B. anthracis Bongchon, Kyungjoo 1, 2 and Bacillus sp. Kyungjoo 3 were reclassified as a B. anthracis. It is concluded that FAMEs analysis provides a sensitive and reliable method for the identification of B. anthracis from closely related taxa.

  • PDF

Determination of fatty acid methyl esters (FAME) content in aviation turbine fuel using multi-dimensional GC-MS (Multi-dimensional GC-MS를 이용한 항공터빈유의 FAME 함량 분석)

  • Youn, Ju Min;Doh, Jin Woo;Hwang, In Ha;Kim, Seong Lyong;Kang, Yong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.717-726
    • /
    • 2017
  • The current allowable cross-contamination level of fatty acid methyl esters (FAME) in aviation turbine fuel (AVTUR) is 50 mg/kg, due to that the presence of FAME in AVTUR can significantly impact the fuel supply system and jet engine. It has been difficult to analyze the level of FAME in AVTUR, since it is consisted of a lot of hydrocarbons. In this study, thus, a new method using multi-dimensional GC-MS (MDGC-MS) was proposed in order to determine the FAME level in AVTUR effectively. Applying to MDGC-MS with Deans switching system enabled us to detect and quantify the FAME with low carbon numbers such as those derived from coconut oil and palm kernel oil. The matrix effect of MDGC-MS method, which could shift the FAME peaks to slightly longer retention times, was reduced by 20 times compared with that of 1-dimensional GC-MS reference method. This developed method could be suitable for qualitative and quantitative analyses to determine the contamination level of trace FAME in AVTUR.