DOI QR코드

DOI QR Code

Preparation and Antifoaming Properties of Long Chain Fatty Acid Methyl Esters

고급지방산 메틸 에스테르류의 합성 및 소포특성

  • Park, Jong-Kwon (Department of Engineering Chemistry, College of Engineering Chungbuk National University Chemistry) ;
  • Kim, A-Ram (Department of Engineering Chemistry, College of Engineering Chungbuk National University Chemistry) ;
  • Hwang, Jun-Bae (Department of Engineering Chemistry, College of Engineering Chungbuk National University Chemistry) ;
  • Jeong, Noh-Hee (Department of Engineering Chemistry, College of Engineering Chungbuk National University Chemistry)
  • 박종권 (충북대학교 공과대학 공업화학과) ;
  • 김아람 (충북대학교 공과대학 공업화학과) ;
  • 황준배 (충북대학교 공과대학 공업화학과) ;
  • 정노희 (충북대학교 공과대학 공업화학과)
  • Received : 2015.03.04
  • Accepted : 2015.03.20
  • Published : 2015.03.30

Abstract

In this study, anti-foaming agents of a fatty acid methyl esters was synthesized and confirmed by FT-IR and $^1H-NMR$ spectroscopy. Synthesized material of characteristic of -C=O group having a $1740cm^{-1}$ and -C-O group $1175cm^{-1}$ peak by using FT-IR, and it was confirmed that k. Surface tensions were measured by surface tensiometer CBVP-43. Their surface tension values was 17.7 to 21 dyne/cm. Anti-foaming abilities in the SLS solution was measured through the Ross-Miles method. Performance of the 4 type of anti-foaming agent was determined and the best anti-foaming agent was prepared using stearic acid methyl.

고급지방산 메틸 에스테르류의 소포제를 합성하고 FT-IR과 $^1H-NMR$ 분석을 통해 확인하였다. FT-IR을 이용하여 합성된 물질의 특징인 -C=O기는 $1740cm^{-1}$ 부근에서, 그리고 C-O기는 $1175cm^{-1}$ 피크 값을 가지는 것을 확인하였다. 또한 $^1H-NMR$ 분석을 통해 에스테르의 -C=O의 Chemical shift가 2.29 ppm에서 나타나는 것을 확인하였다. 표면장력은 Surface Tensiometer CBVP-43을 이용하여 측정하였다. 표면장력은 17.7에서 21 dyne/cm 값을 가진다. SLS 수용액에서의 소포능은 Ross-Miles법을 통해 측정되었다. 4종류의 소포제 중 소포능은 스테아르산메틸을 이용하여 제조한 소포제가 가장 뛰어난 것으로 측정됐다.

Keywords

References

  1. Holmberg K, Jonsson B, Kronberg B, Lindman B, "Surfactants and Polymers in Aqueous Solution". 2nd. ed. Chichester, West Sussex,John, Wiley & sons England:, 1-2 (2003).
  2. N. H. Zeong, G. S. Park, J. S. Park, K. D. Nam, "Antifoaming Properties for Aliphatic Antifoamer Formula", Journal of The Korean Oil Chemists' Society, 16(2), 147-153 (1999).
  3. D. H. Wu, "The Latest Technology of Antifoamer", Oil field Chemistry, 1, 65-72 (1992).
  4. Makoto H. Kazushi A. Appl, Catal, 18(2), 401-405 (1985). https://doi.org/10.1016/S0166-9834(00)84016-6
  5. Tsujii K, "Surface Activity", Academic Press California San Diego, 245 (1998).
  6. Yalkowsky SH, "Solubility and Solubilization in Aqueous" American Chemical Society, Washington, DC, 464, (1999).
  7. David R. Karsa. "Surfactants in Polymers", Coatings, Inks and Adhesives. V.1. Blackwell Publishing, Oxford, England, 219-220 (2003).
  8. S. T. Li, G. W. Zhou, J. M. Han, "The Preparation and Influencing Factors of Defoamer", China Pulp and Paper Industry, 27(6), 62-64, (2006).
  9. Y. Y. Wei, M. Lu. S. F. Bai, "Preparation of Dehydrated Xylitol Monooleate", Journal of Nanjing University of Science and Technology, 2, 95-96 (1994).
  10. Jeong, Ji-Yong, "Properties of Foamed Concrete according to Using Methods and Types of Foaming Agent", Kong-ju university (2010).
  11. Y. W. Kim, "Antifoaming Theory and Antifoamer Application", Lubricating Oil Industries Association, 111, 8-17 (2004).
  12. Sydney Ross & Ian D. Morrison, "Colloidal Systems and Interface", JONH WILEY & SONS Inc, (1988).
  13. Robert Pelton & Ted Flaherty, "Review Defoamers: linking fundamentals to formulations", Polymer Internationals, 52, (2003)
  14. Rovert Pelton, "A Model of Growth in the Presence of Antifoam Emulsion", Chemical Engineering Science, 51, 19 (1996).
  15. Hui Zhang. Clarence A. Miller. Peter R. Garrett & Kirk H. Rany,"Mechanism for defoaming by oils and calcium soap in aqueos systems", Journal of Colloid and Interface Science, 263, (2003).
  16. Moore WJ, "Physical Chemistry", 4nd. ed. Englewood Cliffs. NJ : Prentice Hall 997 (1997).
  17. J. Yu, "Development of Defoamer", Hubei Chemical Industry, 9(1), 17-19 (1992).