• Title/Summary/Keyword: fatty acid binding protein

Search Result 247, Processing Time 0.024 seconds

Molecular and functional characterization of the adiponectin (AdipoQ) gene in goat skeletal muscle satellite cells

  • Wang, Linjie;Xue, Ke;Wang, Yan;Niu, Lili;Li, Li;Zhong, Tao;Guo, Jiazhong;Feng, Jing;Song, Tianzeng;Zhang, Hongping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.8
    • /
    • pp.1088-1097
    • /
    • 2018
  • Objective: It is commonly accepted that adiponectin binds to its two receptors to regulate fatty acid metabolism in adipocytes. To better understand their functions in the regulation of intramuscular adipogenesis in goats, we cloned the three genes (adiponectin [AdipoQ], adiponectin receptor 1 [AdipoR1], and AdipoR2) encoding these proteins and detected their mRNA distribution in different tissues. We also determined the role of AdipoQ in the adipogenic differentiation of goat skeletal muscle satellite cells (SMSCs). Methods: SMSCs were isolated using 1 mg/mL Pronase E from the longissimus dorsi muscles of 3-day-old female Nanjiang brown goats. Adipogenic differentiation was induced in satellite cells by transferring the cells to Dulbecco's modified Eagle's medium supplemented with an isobutylmethylxanthine, dexamethasone and insulin cocktail. The pEGFP-N1-AD plasmid was transfected into SMSCs using Lipofectamine 2000. Expression of adiponectin in tissues and SMSCs was detected by quantitative polymerase chain reaction and immunocytochemical staining. Results: The three genes were predominantly expressed in adipose and skeletal muscle tissues. According to fluorescence and immunocytochemical analyses, adiponectin protein expression was only observed in the cytoplasm, suggesting that adiponectin is localized to the cytoplasm of goat SMSCs. In SMSCs overexpressing the AdipoQ gene, adiponectin promoted SMSC differentiation into adipocytes and significantly (p<0.05) up-regulated expression of AdipoR2, acetyl-CoA carboxylase, fatty-acid synthase, and sterol regulatory element-binding protein-1, though expression of CCAAT/enhancer-binding $protein-{\alpha}$, peroxisome proliferator-activated receptor ${\gamma}$, and AdipoR1 did not change significantly. Conclusion: Adiponectin induced SMSC differentiation into adipocytes, indicating that adiponectin may promote intramuscular adipogenesis in goat SMSC.

Fumigaclavine C attenuates adipogenesis in 3T3-L1 adipocytes and ameliorates lipid accumulation in high-fat diet-induced obese mice

  • Yu, Wan-Guo;He, Yun;Chen, Yun-Fang;Gao, Xiao-Yao;Ning, Wan-E;Liu, Chun-You;Tang, Ting-Fan;Liu, Quan;Huang, Xiao-Cheng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.3
    • /
    • pp.161-169
    • /
    • 2019
  • Fumigaclavine C (FC), an active indole alkaloid, is obtained from endophytic Aspergillus terreus (strain No. FC118) by the root of Rhizophora stylosa (Rhizophoraceae). This study is designed to evaluate whether FC has anti-adipogenic effects in 3T3-L1 adipocytes and whether it ameliorates lipid accumulation in high-fat diet (HFD)-induced obese mice. FC notably increased the levels of glycerol in the culture supernatants and markedly reduced lipid accumulation in 3T3-L1 adipocytes. FC differentially inhibited the expressions of adipogenesis-related genes, including the peroxisome proliferator-activated receptor proteins, CCAAT/enhancer-binding proteins, and sterol regulatory element-binding proteins. FC markedly reduced the expressions of lipid synthesis-related genes, such as the fatty acid binding protein, lipoprotein lipase, and fatty acid synthase. Furthermore, FC significantly increased the expressions of lipolysis-related genes, such as the hormone-sensitive lipase, Aquaporin-7, and adipose triglyceride lipase. In HFD-induced obese mice, intraperitoneal injections of FC decreased both the body weight and visceral adipose tissue weight. FC administration significantly reduced lipid accumulation. Moreover, FC could dose-dependently and differentially regulate the expressions of lipid metabolism-related transcription factors. All these data indicated that FC exhibited anti-obesity effects through modulating adipogenesis and lipolysis.

Psidium guajava L. leaf extract inhibits adipocyte differentiation and improves insulin sensitivity in 3T3-L1 cells

  • Choi, Esther;Baek, Seoyoung;Baek, Kuanglim;Kim, Hye-Kyeong
    • Nutrition Research and Practice
    • /
    • v.15 no.5
    • /
    • pp.568-578
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: Psidium guajava L. (guava) leaves have been shown to exhibit hypoglycemic and antidiabetic effects in rodents. This study investigated the effects of guava leaf extract on adipogenesis, glucose uptake, and lipolysis of adipocytes to examine whether the antidiabetic properties are mediated through direct effects on adipocytes. MATERIALS/METHODS: 3T3-L1 cells were treated with 25, 50, 100 ㎍/mL of methanol extract from guava leaf extract (GLE) or 0.1% dimethyl sulfoxide as a control. Lipid accumulation was evaluated with Oil Red O Staining and AdipoRed assay. Immunoblotting was performed to measure the expression of adipogenic transcription factors, fatty acid synthase (FAS), and AMP-activated protein kinase (AMPK). Glucose uptake under basal or insulin-stimulated condition was measured using a glucose analog 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl) amino]-2-deoxy-D-glucose. Lipolysis from fully differentiated adipocytes was measured by free fatty acids release into the culture medium in the presence or absence of epinephrine. RESULTS: Oil Red O staining and AdipoRed assay have shown that GLE treatment reduced lipid accumulation during adipocyte differentiation. Mitotic clonal expansion, an early essential event for adipocyte differentiation, was inhibited by GLE treatment. GLE inhibited the expression of transcription factors involved in adipocyte differentiation, such as peroxisome proliferator-activated receptor 𝛄 (PPAR𝛄), CCAAT/enhancer-binding protein α (C/EBPα), and sterol regulatory element-binding protein-1c (SREBP-1c). FAS expression was also decreased while the phosphorylation of AMPK was increased by GLE treatment. In addition, GLE increased insulin-induced glucose uptake into adipocytes. In lipid-filled mature adipocytes, GLE enhanced epinephrine-induced lipolysis but reduced basal lipolysis dose-dependently. CONCLUSIONS: The results show that GLE inhibits adipogenesis and improves adipocyte function by reducing basal lipolysis and increasing insulin-stimulated glucose uptake in adipocytes, which can be partly associated with antidiabetic effects of guava leaves.

Conjugated Linoleic Acid as a Key Regulator of Performance, Lipid Metabolism, Development, Stress and Immune Functions, and Gene Expression in Chickens

  • Choi, Yang-Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.448-458
    • /
    • 2009
  • It has been well documented from animal and human studies that conjugated linoleic acid (CLA) has numerous beneficial effects on health. In chickens, CLA exerts many effects on performance ranging from egg quality and yolk lipids to meat quality. Although there are several CLA isomers available, not all CLA isomers have the same incorporation rates into egg yolk: cis-9,trans-11 and trans-10,cis-12 CLA isomers are more favorably deposited into egg yolk than other isomers investigated, but of the two isomers, the former has a higher incorporation rate than the latter. CLA alters the amounts and profiles of lipids in plasma, muscles and liver. Furthermore, increased liver weight was reported in chickens fed dietary CLA. As observed in egg yolk, marked reduction in intramuscular lipids as well as increased protein content was observed in different studies, leading to elevation in protein-to-fat ratio. Inconsistency exists for parameters such as body weight gain, feed intake, feed conversion ratio, egg production rate and mortality, depending upon experimental conditions. One setback is that hard-cooked yolks from CLA-consuming hens have higher firmness as refrigeration time and CLA are increased, perhaps owing to alterations in physico-chemistry of yolk. Another is that CLA can be detrimental to hatchability when provided to breeders: eggs from these breeders have impaired development in embryonic and neonatal stages, and have increased and decreased amounts of saturated fatty acids and monounsaturated fatty acids (MUFAs), respectively. Thus, both problems can be fully resolved if dietary sources rich in MUFAs are provided together with CLA. Emerging evidence suggests that CLA exerts a critical impact on stress and immune functions as it can completely nullify some of the adverse effects produced by immune challenges and reduce mortality in a dose-dependent manner. Finally, CLA is a key regulator of genes that may be responsible for lipid metabolism in chickens. CLA down-regulates both expression of the gene encoding stearoyl-CoA desaturase-1 and its protein activity in the chicken liver while up-regulating mRNA of sterol regulatory element-binding protein-l.

Standardized rice bran extract improves hepatic steatosis in HepG2 cells and ovariectomized rats

  • Lim, Dong Wook;Jeon, Hyejin;Kim, Minji;Yoon, Minseok;Jung, Jonghoon;Kwon, Sangoh;Cho, Suengmok;Um, Min Young
    • Nutrition Research and Practice
    • /
    • v.14 no.6
    • /
    • pp.568-579
    • /
    • 2020
  • BACKGROUD/OBJECTIVES: Hepatic steatosis is the most common liver disorder, particularly in postmenopausal women. This study investigated the protective effects of standardized rice bran extract (RBS) on ovariectomized (OVX)-induced hepatic steatosis in rats. MATERIALS/METHODS: HepG2 cells were incubated with 200 µM oleic acid to induce lipid accumulation with or without RBS and γ-oryzanol. OVX rats were separated into three groups and fed a normal diet (ND) or the ND containing 17β-estradiol (E2; 10 ㎍/kg) and RBS (500 mg/kg) for 16 weeks. RESULTS: RBS supplementation improved serum triglyceride and free fatty acid levels in OVX rats. Histological analysis showed that RBS significantly attenuated hepatic fat accumulation and decreased hepatic lipid, total cholesterol, and triglyceride levels. Additionally, RBS suppressed the estrogen deficiency-induced upregulation of lipogenic genes, such as sterol regulatory element-binding protein 1 (SREBP1), acetyl-CoA carboxylase 1, fatty acid synthase, glycerol-3-phosphate acyltransferase, and stearoyl-CoA desaturase 1. CONCLUSIONS: RBS and γ-oryzanol effectively reduced lipid accumulation in a HepG2 cell hepatic steatosis model. RBS improves OVX-induced hepatic steatosis by regulating the SREBP1-mediated activation of lipogenic genes, suggesting the benefits of RBS in preventing fatty liver in postmenopausal women.

Anti-obesity effects of an enzymatic extract of mandarin (Citrus unshiu) peel in 3T3-L1 adipocytes (감귤피 효소적 추출물의 지방세포에서의 항비만 효과)

  • Jang, Yebin;Kang, Heejoo;Kim, Jusang;Lee, Seung-Hong
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.2
    • /
    • pp.149-153
    • /
    • 2021
  • Mandarin peel (MP) is a by-product of the processing of citrus juice or other products. This study aimed to investigate the potential anti-obesity effect of an enzymatic extract of MP on the inhibition of adipogenesis in 3T3-L1 adipocytes. The enzymatic extract (MPCE) was prepared using the commercial food-grade carbohydrase Celluclast. Lipid accumulation and triglyceride levels were significantly lower in MPCE-treated cells than in untreated cells. In addition, MPCE treatment reduced the protein expression levels of peroxisome proliferator-activated receptor-γ, CCAAT/enhancer-binding protein α, sterol regulatory element-binding protein 1, and fatty acid-binding protein 4. These results suggest that MPCE inhibits adipogenesis by downregulating the expression levels of adipogenesis-related proteins. Therefore, the current findings demonstrate that MPCE possesses potent anti-obesity properties and could be a potential ingredient in functional food industries.

Low lysine stimulates adipogenesis through ZFP423 upregulation in bovine stromal vascular cells

  • Joseph F., dela Cruz;Kevin Wayne Martinez, Pacunla;Seong Gu, Hwang
    • Journal of Animal Science and Technology
    • /
    • v.64 no.6
    • /
    • pp.1173-1183
    • /
    • 2022
  • Adipogenesis is a complex process comprising commitment and a differentiation stages. Through research, many different transcriptional factors were found to mediate preadipocyte commitment and differentiation. Lysine has a potential of regulating the commitment and differentiation of preadipocytes. In the present study, intramuscular stromal vascular cells (SVC) isolated from Hanwoo beef cattle were used to elucidate the effects of low lysine level on adipogenesis. SVC were isolated and incubated with various concentrations of lysine (0, 37.5, 75, 150 and 300 µg/mL). No significant difference were observed in the proliferation of SVC after 24 and 48 h of incubation with different concentration of lysine. On preadipocyte determination, reducing the level of lysine significantly increased the expression of preadipocyte commitment gene Zinc finger protein 423 and Preadipocyte factor-1. Upon differentiation, Oil Red O staining revealed that lipid accumulation and triglyceride content significantly increased with the decreasing lysine levels in the media. Expression levels of peroxisome proliferator-activated receptor-γ, CCAAT enhancer binding protein-α, sterol regulatory element binding protein-1c, Fatty Acid Binding Protein 4 and stearoyl CoA desaturase were upregulated by the decreased level of lysine. These data suggest the potential mechanism of action for the improved preadipocyte commitment and adipocyte differentiation in bovine intramuscular SVC upon treatment with low levels of lysine. These findings may be valuable in developing feed rations that promote deposition of intramuscular fat in beef cattle through lysine level modification.

Ginseng Leaf Extract Prevents High Fat Diet-Induced Hyperglycemia and Hyperlipidemia through AMPK Activation

  • Yuan, Hai-Dan;Kim, Sung-Jip;Quan, Hai-Yan;Huang, Bo;Chung, Sung-Hyun
    • Journal of Ginseng Research
    • /
    • v.34 no.4
    • /
    • pp.369-375
    • /
    • 2010
  • This study evaluated the protective effects of ginseng leaf extract (GLE) against high fat-diet-induced hyperglycemia and hyperlipidemia, and explored the potential mechanism underlying these effects in C57BL/6J mice. The mice were randomly divided into four groups: normal control, high fat diet control (HFD), GLE-treated at 250 mg/kg, and GLE-treated at 500 mg/kg. To induce hyperglycemic and hyperlipidemic states, mice were fed a high fat diet for 6 weeks and then administered GLE once daily for 8 weeks. At the end of the treatment, we examined the effects of GLE on plasma glucose, lipid levels, and the expression of genes related to lipogenesis, lipolysis, and gluconeogenesis. Both GLE groups lowered levels of plasma glucose, insulin, triglycerides, total cholesterol, and non-esterified fatty acids when compared to those in HFD group. Histological analysis revealed significantly fewer lipid droplets in the livers of GLE-treated mice compared with HFD mice. To elucidate the mechanism, Western blots and RT-PCR were performed using liver tissue. Compared with HFD mice, GLE-treated mice showed higher levels of phosphorylation of AMP-activated protein kinase (AMPK) and its substrate, acetyl-CoA carboxylase, but no differences in the expression of lipogenic genes such as sterol regulatory element-binding protein 1a, fatty acid synthase, sterol-CoA desaturase 1 and glycerol-3-phosphate acyltransferase. However, the expression levels of lipolysis and fatty acid uptake genes such as peroxisome proliferator-activated receptor-$\alpha$ and CD36 were increased. In addition, phosphoenolpyruvate carboxykinase gene expression was decreased. These results suggest that GLE ameliorates hyperglycemia and hyperlipidemia by inhibiting gluconeogenesis and stimulating lipolysis, respectively, via AMPK activation.

Improvement Effect of Non-alcoholic Fatty Liver Disease by Curcuma longa L. Extract (강황 추출물의 비알코올성 지방간 질환 개선 효과)

  • Lee, Young Seob;Lee, Dae Young;Kwon, Dong Yeul;Kang, Ok Hwa
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.4
    • /
    • pp.276-286
    • /
    • 2020
  • Background: Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with multiple metabolic disorders. The medicinal plant Curcuma longa L. is widely distributed in Asia and has been used to treat a spectrum diseases in clinical practice. To date, there are inadequate reports of the effects of C. longa 50% EtOH extract (CE) on NAFLD. Therefore, in this study, we evaluate the CE on an NAFLD animal and elucidate the mechanism of action. Methods and Results: C57BL/6J mice fed a methionine-choline deficient diet (MCD) were treated with CE or milk thistle, and changes in inflammation and stetosis were assessed. Experimental animals were divided into six group (n = 10); Normal, MCD, MCD + CE 50 mg/kg/day (CE 50), MCD + CE 100 mg/kg/day (CE 100), MCD + CE 150 mg/kg/day (CE 150), and the Control, MCD + Milk thistle 150 mg/kg/day (MT 150). Body weight, liver weight, liver function, and histological changes were assessed in experimental animals. Quantitative real-time polymerase chain reaction and western blot analyses were performed on samples collected after 4 weeks of treatment. We observed that CE administration improved MCD-diet-induced lipid accumulation, and triglyceride (TG) and total cholesterol (TC) levels in serum. Treatment with CE also decreased hepatic lipogenesis through modulation of the sterol regulatory element binding protein-1 (SREBP-1), CCAAT-enhancer binding protein α (C/EBPα), fatty acid synthase (FAS), and peroxisome proliferator-activated receptor γ (PPARγ) expresion. In addition, the use of CE increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and inhibited the up-regulation of toll-like receptor (TLR)-2 and TLR-4 signaling and the production of inflammatory mediators. Conclusions: In this report, we observed that CE regulated lipid accumulation in an MCD dietinduced NAFLD model by decreasing lipogenesis. These data suggeste that CE could effectively protect mice against MCD-induced NAFLD, by inhibiting the TLR-2 and TLR-4 signaling cascades.

In Silico Screening of a Novel Inhibitor of β-Ketoacyl Acyl Carrier Protein Synthase I

  • Lee, Jee-Young;Jeong, Ki-Woong;Lee, Ju-Un;Kang, Dong-Il;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1645-1649
    • /
    • 2011
  • [ ${\beta}$ ]Ketoacyl acyl carrier protein synthase I (KAS I) is involved in the elongation of unsaturated fatty acids in bacterial fatty acid synthesis and a therapeutic target of designing novel antibiotics. In this study, we performed receptor-oriented pharmacophore-based in silico screening of E. coli KAS I (ecKAS I) with the aim of identifying novel inhibitors. We determined one pharmacophore map and selected 8 compounds as candidates ecKAS I inhibitors. We discovered one antimicrobial compound, YKAe1008, N-(3-pyridinyl) hexanamide, displaying minimal inhibitory concentration (MIC) values in the range of 128-256 ${\mu}g/mL$ against MRSA and VREF. YKAe1008 was subsequently assessed for binding to ecKAS I using saturation-transfer difference NMR spectroscopy. Further optimization of this compound will be carried out to improve its antimicrobial activity and membrane permeability against bacterial cell membrane.