• Title/Summary/Keyword: fatigue response

검색결과 450건 처리시간 0.028초

Comparative analysis of fatigue assessment considering hydroelastic response using numerical and experimental approach

  • Kim, Beom-il;Jung, Byung-hoon
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.355-365
    • /
    • 2020
  • In this study, considering the hydroelastic response represented by the springing and whipping phenomena, we propose a method of estimating the fatigue damage in the longitudinal connections of ships. First, we screened the design sea states using a load transfer function based on the frequency domain. We then conducted a time domain fluid-structure interaction (FSI) analysis using WISH-FLEX, an in-house code based on the weakly nonlinear approach. To obtain an effective and robust analytical result of the hydroelastic response, we also conducted an experimental model test with a 1/50-scale backbone-based model of a ship, and compared the experimental results with those obtained from the FSI analysis. Then, by combining the results obtained from the hydroelastic response with those obtained from the numerical fatigue analysis, we developed a fatigue damage estimation method. Finally, to demonstrate the effectiveness of the developed method, we evaluated the fatigue strength for the longitudinal connections of the real ship and compared it with the results obtained from the model tests.

동적응답의 변화를 고려한 점용접부의 진동피로해석 (Vibration Fatigue Analysis for Multi-Point Spot-Welded SPCC Structure Considering Change of Dynamic Response)

  • 강기원;장일주;김정규
    • 대한기계학회논문집A
    • /
    • 제34권9호
    • /
    • pp.1193-1199
    • /
    • 2010
  • 점용접은 자동차 산업에서 차체 구조물의 대표적 접합방법으로서 차량에 피로하중이 작용할 경우 구조물 전체의 파손 발생이전에 점용접부 일부에 조기 피로파손의 발생가능성이 존재한다. 이러한 점용접부의 국부적 파손은 차량 구조물의 동적 반응 및 이에 따른 피로거동의 변화를 야기할 가능성이 존재한다. 따라서 차량과 같이 스펙트럼하중을 받는 구조물의 피로수명 평가를 위해서는 이러한 점용접부의 국부적 파손에 의한 동적 반응의 변화를 고려하여야 한다. 본 논문에서는 점용접부의 누적피로손상으로 인한 동적반응의 변화를 고려한 진동피로해석을 수행하였다. 이에 필요한 S-N 선도는 전단 점용접 시험편에 대한 일정진폭 피로시험을 통하여 획득하였다. 또한 스펙트럼하중하의 점용접부의 피로수명은 유한요소해석에 기반한 진동피로해석을 통하여 평가하였다.

진동 특성을 고려한 자동차 냉각모듈 방진고무의 내구성 평가 (Evaluation for Fatigue Life of Rubber Isolator for Vibration Characteristic on Automotive Cooling Module)

  • 심희진;김한철;김정규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.350-355
    • /
    • 2008
  • A Rubber mount is widely used for mechanical parts or engineering materials. Especially, it plays an important role in reducing mechanical vibration due to cyclic loading. But, rubber mount is damaged due to the cyclic loading and resonance. Therefore, it is necessary to investigate evaluation of fatigue life considering vibration characteristics for rubber. In this study, a vibration fatigue analysis was performed and based on Power Spectral Density(PSD) and the stress-life curve and a result of frequency response analysis in the finite element method. The measured load history in experiment was transformed to PSD curve. The stress-life curve was obtained by nonlinear static analysis and fatigue test. In addition, frequency response analysis was conducted for mechanical part. In order to evaluate fatigue life of rubber mount, vibration fatigue test was conducted at the constant acceleration-level as well. Fatigue life was determined when the load capacity is reduced to 60% of its initial value. As a result, predicted fatigue life of rubber mount agreed fairly well with the experimental fatigue life.

  • PDF

도로 하중조건을 고려한 상용차 판스프링의 피로강도 평가 II (Fatigue Strength Evaluation of LCV Leaf spring Considering Road Load Response II)

  • 손일선;배동호;정원석;정원욱;박순철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1127-1132
    • /
    • 2003
  • Suspension system of vehicle have enough endurance during its life time to protect passenger. Spring is one of major part of vehicle. Thus, a fatigue strength evaluation for leaf spring based on road load response was carried out. At first, strain of leaf spring is measured on the city condition and proving ground condition. And next, the damage analysis of road load response data was carried out. And fatigue test of leaf spring were also carried out. Based on -N life relation, fatigue life of leaf spring was evaluated at belgian mode, city mode and drawing test specification. After that, it is compared the design life of leaf spring and evaluated fatigue life by belgian mode, city mode and drawing test specification. From the above, the maximum load-fatigue life relation of leaf spring was defined by test. and new test target of belgian mode and city mode was proposed to accept design specification of leaf spring. It is expect that proposed test target can verify leaf spring fatigue endurance at specific road condition.

  • PDF

복합 스펙트럼 패턴의 진동 시험을 위한 가속도 응답 데이터 기반의 피로 손상도 계산 방법 (Damage Count Method Using Acceleration Response for Vibration Test Over Multi-spectral Loading Pattern)

  • 김찬중
    • 한국소음진동공학회논문집
    • /
    • 제25권11호
    • /
    • pp.739-746
    • /
    • 2015
  • Several damage counting methods can be applied for the fatigue issues of a ground vehicle system using strain data and acceleration data is partially used for a high cyclic loading case. For a vibration test, acceleration data is, however, more useful than strain one owing to the good nature of signal-to-random ratio at acceleration response. The test severity can be judged by the fatigue damage and the pseudo-damage from the acceleration response stated in ISO-16750-3 is one of sound solutions for the vibration test. The comparison of fatigue damages, derived from both acceleration and strain, are analyzed in this study to determine the best choice of fatigue damage over multi-spectral input pattern. Uniaxial excitation test was conducted for a notched simple specimen and response data, both acceleration and strain, are used for the comparison of fatigue damages.

설계 민감도 해석을 활용한 피로 손상도 예측방법 (Fatigue Damage Prediction Using Design Sensitivity Analysis)

  • 김찬중;이봉현;전현철;조현호;강연준
    • 한국소음진동공학회논문집
    • /
    • 제22권2호
    • /
    • pp.123-129
    • /
    • 2012
  • It was previously suggested the design sensitivity analysis based on transmissibility function to identify the most sensitive response location over a small design modification. On the other hand, energy isoclines were used to predict the fatigue damage with acceleration response only. Both of previous studies commonly tackle the engineering problem using the acceleration response alone such that it may be possible to investigate the relationship between sensitivity analysis and accumulated fatigue damage. In this paper, it is suggested the novel method of vibration fatigue prediction using design sensitivity analysis to enhance the accuracy of predicted accumulated fatigue. Uni-axial vibration testing is performed with a simple notched specimen and the prediction of fatigue damage is conducted using accelerations measured at different locations. It can be concluded that the accuracy of predicted fatigue damage is proportional to the sensitivity index of the responsible location.

정상 정규분포 확률과정의 삼봉형 스펙트럼에 대한 피로손상 모델 비교 (Fatigue Damage Model Comparison with Tri-modal Spectrum under Stationary Gaussian Random Processes)

  • 박준범;정세민
    • 한국해양공학회지
    • /
    • 제28권3호
    • /
    • pp.185-192
    • /
    • 2014
  • The riser systems for floating offshore structures are known to experience tri-modal dynamic responses. These are owing to the combined loadings from the low-frequency response due to riser tension behavior, middle-range frequency response coming from winds and waves, and high-frequency response due to vortex induced-vibration. In this study, fatigue damage models were applied to predict the fatigue damages in a well-separated tri-modal spectrum, and the resultant fatigue damages of each model were compared with the most reasonable fatigue damage calculated by the inverse Fourier transform of the spectrum, rain-flow counting method, and Palmgren-Miner rule as a reference. The results show that the fatigue damage models developed for a wide-band spectrum are applicable to the tri-modal spectrum, and both the Benasciutti-Tovo and JB models could most accurately predict the fatigue damages of the tri-modal spectrum responses.

Affective Response to Feelings of Password Fatigue by Password Change Requirements

  • Sang Cheol Park
    • Asia pacific journal of information systems
    • /
    • 제33권3호
    • /
    • pp.603-623
    • /
    • 2023
  • While prior work has conducted individuals' password security behavior, there is a relatively neglect to examine individuals' affect and feelings of password fatigue in password change context. Therefore, this study explicated individuals' affective response to the feelings of password fatigue by drawing on several theoretical lens. Survey data collected from 267 users were used to test the model using partial least square analysis. This study found that feelings of password fatigue positively affected the negative password fatigue-induced affect, and also both the feelings of password fatigue and the negative password fatigue-induced affect were negatively related to attitude toward changing passwords, which in turn, leads to the intention to change passwords. Furthermore, this study found that shadow work recognition negatively moderated the relationship between attitude and behavioral intention. This study could offer a new theoretical perspective to understand an individual's security behavior and provide empirical evidences for practitioners in charge of IT security in organizations.

Effectiveness of strake installation for traffic signal structure fatigue mitigation

  • Wieghaus, Kyle T.;Hurlebaus, Stefan;Mander, John B.
    • Structural Monitoring and Maintenance
    • /
    • 제1권4호
    • /
    • pp.393-409
    • /
    • 2014
  • Across-wind response is often the cause of significant structural vibrations that in turn cause fatigue damage to welded and other connections. The efficacy of low-cost helical strakes to mitigate such adverse response is presented for a traffic signal structure. Field observations are made on a prototype structure in a natural wind environment without and with helical strakes installed on the cantilevered arm. Through continuous monitoring, the strakes were found to be effective in reducing across-wind response at wind speeds less than 10 m/s. Estimates of fatigue life are made for four different geographical locations and wind environments. Results for the class of traffic signal structure show that helical arm strakes are most effective in locations with benign wind environments where the average annual wind speed is not more than the vortex shedding wind speed, which for this investigation is 5 m/s. It is concluded that while strakes may be effective, it is not the panacea to mitigating connection fatigue at all locations.

피로손상의 누적에 따른 강성변화를 고려한 점용접부의 진동피로해석 (Vibration Fatigue Analysis of Spot Welded Component considering Change of Stiffness due to Fatigue Damage)

  • 강기원
    • 한국융합학회논문지
    • /
    • 제5권1호
    • /
    • pp.1-8
    • /
    • 2014
  • 본 논문의 목적은 진동 피로해석 기법을 적용하여 다수의 용접점을 포함하고 있는 점용접 구조물의 강성변화를 고려하여 피로수명을 평가하는 것이다. 먼저 모재부 인장특성 및 점용접부의 인장 및 피로특성을 획득하였다. 유한요소법을 적용하여 S-N 선도를 획득하여 피로해석에 적용하였다. 주파수 응답해석을 수행하여 구조물의 전달함수를 획득하였고, 주파수영역에서 0.11의 PSD를 선정하여 수행하였다. 강성변화 및 고유진동수의 변화를 알아보기 위하여 점용접부의 총 6개 지점 중 최소수명이 발생하는 지점을 기준으로 1개씩 제거하여 반복 해석을 수행하였다. 따라서 강성이 낮아질수록 고유주파수도 낮아지는 것을 확인하였다. 이러한 조건하에서 진동피로해석을 수행하여 피로손상의 누적에 따른 전달합수의 변화를 고려한 진동피로해석을 수행하였다.