• 제목/요약/키워드: fatigue reliability

검색결과 543건 처리시간 0.031초

마그네슘합금의 피로파손수명의 누적확률분포특성과 신뢰성에 미치는 경계조건의 영향 (Effect of Boundary Conditions on Reliability and Cumulative Distribution Characteristics of Fatigue Failure Life in Magnesium Alloy)

  • 최선순
    • 한국산학기술학회논문지
    • /
    • 제12권2호
    • /
    • pp.594-599
    • /
    • 2011
  • 본 논문은 마그네슘합금 AZ31의 피로파손수명의 확률론적 특성과 신뢰성에 미치는 경계조건의 영향을 평가하였다. 경계조건으로 시편두께와 응력비 그리고 최대피로하중을 적용하였으며, 각 경계조건별로 세부 실험조건에 대한 피로균열전파실험을 수행하여 피로파손수명에 대한 통계 데이터를 획득하였다. 마그네슘합금의 피로파손수명의 통계적 해석을 위하여 3-모수 와이블분포를 사용하였다. 시편두께가 두꺼울수록, 응력비가 클수록, 그리고 최대피로하중이 작을수록 통계적 피로파손수명이 길게 나타났다. 반면에 시편두께가 얇을수록, 응력비가 작을수록, 그리고 최대피로하중이 클수록 신뢰성이 급격히 감소하였다.

Vehicle-bridge coupling vibration analysis based fatigue reliability prediction of prestressed concrete highway bridges

  • Zhu, Jinsong;Chen, Cheng;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • 제49권2호
    • /
    • pp.203-223
    • /
    • 2014
  • The extensive use of prestressed reinforced concrete (PSC) highway bridges in marine environment drastically increases the sensitivity to both fatigue-and corrosion-induced damage of their critical structural components during their service lives. Within this scenario, an integrated method that is capable of evaluating the fatigue reliability, identifying a condition-based maintenance, and predicting the remaining service life of its critical components is therefore needed. To accomplish this goal, a procedure for fatigue reliability prediction of PSC highway bridges is proposed in the present study. Vehicle-bridge coupling vibration analysis is performed for obtaining the equivalent moment ranges of critical section of bridges under typical fatigue truck models. Three-dimensional nonlinear mathematical models of fatigue trucks are simplified as an eleven-degree-of-freedom system. Road surface roughness is simulated as zero-mean stationary Gaussian random processes using the trigonometric series method. The time-dependent stress-concentration factors of reinforcing bars and prestressing tendons are accounted for more accurate stress ranges determination. The limit state functions are constructed according to the Miner's linear damage rule, the time-dependent S-N curves of prestressing tendons and the site-specific stress cycle prediction. The effectiveness of the methodology framework is demonstrated to a T-type simple supported multi-girder bridge for fatigue reliability evaluation.

Reliability and Validity of Turkish Versions of the Child, Parent and Staff Cancer Fatigue Scales

  • Gerceker, Gulcin Ozalp;Yilmaz, Hatice Bal
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권7호
    • /
    • pp.3135-3141
    • /
    • 2012
  • This study was designed to adapt the Turkish versions of scales to evaluate fatigue in children with cancer from the perspectives of the children, parents and staff. The objective of this study was to validate "Child Fatigue Scale-24 hours" (CFS-24 hours), "Parent Fatigue Scale-24 hours" (PFS-24 hours) and "Staff Fatigue Scale-24 hours" (SFS-24 hours) for use in Turkish clinical research settings. Translation of the scales into Turkish and validity and reliability tests were performed. The validity of the translated scales was assessed with language validity and content validity. The reliability of the translated scales was assessed with internal consistency. The scales were evaluated by considering the following: calculation of the Cronbach alpha coefficient for parallel form reliability with 52 pediatric cancer patients, 86 parents and 43 nurses. The internal consistency was estimated as 0.88 for the Child Fatigue Scale-24 hours, 0.77 for the Parent Fatigue Scale-24 hours, and 0.72 for the Staff Fatigue Scale-24 hours (Cronbach's ${\alpha}$). The Turkish version of the Child Fatigue Scale -24 hours, the Parent Fatigue Scale -24 hours and the Staff Fatigue Scale -24 hours were judged reliable and valid instruments to assess fatigue in children and showed good psychometric properties. These scales should assist in understanding to what extent initiatives can minimize or eliminate fatigue. Our scales are recommended for further studies and use in pediatric oncology clinics as routine measurements and nursing initiatives should be planned accordingly.

고장물리 기반 수중 매설형 PBA에 대한 신뢰성 설계 연구 (Reliability Design Analysis for Underwater Buriend PBA Based on PoF)

  • 김지영;이기원;윤홍우;이승진;허준기;권형안
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제17권4호
    • /
    • pp.280-288
    • /
    • 2017
  • Purpose: PBA buried in underwater requires high reliability because of its mission critical characteristic and harsh operational environment during its life cycle. Therefore, various reliability improvement activities are necessary. The defect on PBA manufacturing process have been studied, as a result, many activities and standards have been presented. However, there are less studies regarding failure pattern on physical features based on design. In this paper, we studied a possible failure patten based on physical features that is related with manufacturing process of PBA. And reliability improvement design based on PoF (Physical of Failure) were intruduced in this paper. Methods: A reliability prediction simulation were performed on the components A and B of the H system using Sherlock Software which is a PoF commercial tool from DFR solution. Solder fatigue and PTH fatigue analysis based on thermal cycling profiles and random vibration was analyzed on three earthquake response spectrum. Result: It was validated that life time and reliability improvement design through solder fatigue and PTH fatigue analysis in case of component. For compoenet B, random vibration fatigue was additionally analyzed and validated reliability for earthquakes profile. Conclusion: In design stage prior to manufacturing, PoF can be analyzed, and it is possible to make a reliability improvement/validated design using design data. This study can be applied in every design step and contribute to make more stable development product.

피로사정도구(Fatigue Assessment Instrument : FAI)의 신뢰도와 타당도 검증 (Reliability and Validity Tests for the fatigue Assessment Instrument (FAI))

  • 변영순;이정인
    • 기본간호학회지
    • /
    • 제11권2호
    • /
    • pp.220-225
    • /
    • 2004
  • Purpose: The purpose of this study was to test the reliability and validity of FAI and to apply it in Korea. Method: Data were collected from 180 middle-age women. The questionnaire, which was originally developed by Schwartz, Jandorf & Krupp, was analyzed using Cronbach's a and factor analysis. Results: Cronbach's a for the FAI was .9198. As a result of item analysis, 27 items were selected from the total of 29 items, Items that showed low correlation with the total scale were excluded. Six factors were fixed from the data analysis performed using principle component analysis and varimax rotation. These six factors account for 65.3% of total variance. The first factor was global fatigue severity, and the second one was fatigue consequences. The other factors were method of fatigue reduction, fatigue caused by exercise, fatigue caused by routine activity, and fatigue caused by stress and depression, sequentially. Conclusion: The reliability and validity of FAI were verified.

  • PDF

Structural system reliability-based design optimization considering fatigue limit state

  • Nophi Ian D. Biton;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • 제33권3호
    • /
    • pp.177-188
    • /
    • 2024
  • The fatigue-induced sequential failure of a structure having structural redundancy requires system-level analysis to account for stress redistribution. System reliability-based design optimization (SRBDO) for preventing fatigue-initiated structural failure is numerically costly owing to the inclusion of probabilistic constraints. This study incorporates the Branch-and-Bound method employing system reliability Bounds (termed the B3 method), a failure-path structural system reliability analysis approach, with a metaheuristic optimization algorithm, namely grey wolf optimization (GWO), to obtain the optimal design of structures under fatigue-induced system failure. To further improve the efficiency of this new optimization framework, an additional bounding rule is proposed in the context of SRBDO against fatigue using the B3 method. To demonstrate the proposed method, it is applied to complex problems, a multilayer Daniels system and a three-dimensional tripod jacket structure. The system failure probability of the optimal design is confirmed to be below the target threshold and verified using Monte Carlo simulation. At earlier stages of the optimization, a smaller number of limit-state function evaluation is required, which increases the efficiency. In addition, the proposed method can allocate limited materials throughout the structure optimally so that the optimally-designed structure has a relatively large number of failure paths with similar failure probability.

On the fatigue performance of Aluminum alloy 2024 scarfed lap joints

  • Yan, W.Z.;Gao, H.S.;Yuan, X.;Wang, F.S.;Yue, Z.F.
    • Structural Engineering and Mechanics
    • /
    • 제44권1호
    • /
    • pp.35-49
    • /
    • 2012
  • A series of fatigue test were carried out on scarfed lap joints (SLJ) using in airfoil siding to explore the effect of structural details, such as rows of rivets, lap angles, on its fatigue performance. Finite element (FE) analysis was employed to explore the effect of lap angle on load transfer and the stress evolution around the rivet hole. At last, the fatigue lives were predicted by nominal stress approach and critical plane approach. Both of the test results and predicted results showed that fatigue life of SLJ was remarkably increased after introducing lap angle into the faying surface. Specimen with the lap angle of $1.68^{\circ}$ exhibits the best fatigue performance in the present study.

교량구조물의 피로신뢰성 해석연구 (Fatigue Reliability Analysis of Bridge Structures)

  • 오병환;김지상;정철헌;한승환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1991년도 봄 학술발표회 논문집
    • /
    • pp.129-132
    • /
    • 1991
  • The safe design against fatigue failure becomes more important criterion in highway bridges. The fatigue-safety evaluation is performed for the current bridge code. A reliability model incorporating fatigue damage is formulated and the satety indices are calculated. The present study indicates that the calculated safety indices vary greatly with traffic volumes and loadometer values. A method is proposed to maintain uniform reliability for vafious traffic conditions and loadings.

  • PDF

스테인레스강 저주기 피로 수명 분포의 추계적 모델링

  • 이봉훈;이순복
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2000년도 춘계학술대회 발표논문집
    • /
    • pp.213-222
    • /
    • 2000
  • In present study, a stochastic model is developed for the low cycle fatigue life prediction and reliability assessment of 316L stainless steel under variable multiaxial loading. In the proposed model, fatigue phenomenon is considered as a Markov process, and damage vector and reliability are defined on every plane. Any low cycle fatigue damage evaluating method can be included in the proposed model. The model enables calculation of statistical reliability and crack initiation direction under variable multiaxial loading, which are generally not available. In present study, a critical plane method proposed by Kandil et al., maximum tensile strain range, and von Mises equivalent strain range are used to calculate fatigue damage. When the critical plane method is chosen, the effect of multiple critical planes is also included in the proposed model. Maximum tensile strain and von Mises strain methods are used for the demonstration of the generality of the proposed model. The material properties and the stochastic model parameters are obtained from uniaxial tests only. The stochastic model made of the parameters obtained from the uniaxial tests is applied to the life prediction and reliability assessment of 316L stainless steel under variable multiaxial loading. The predicted results show good accordance with experimental results.

  • PDF

선박용 디젤 엔진 크랭크 스로 부품용 S34MnV강의 피로한도에 대한 신뢰도 예측 (Prediction of Reliability of Fatigue Limit of S34MnV Steel for Marine Diesel Engine Crank Throw Components)

  • 김선진;공유식
    • 대한기계학회논문집A
    • /
    • 제40권8호
    • /
    • pp.751-757
    • /
    • 2016
  • 본 논문은 스테어케이스법을 사용하여 크랭크 스로 부품용 S34MnV강의 피로한도의 신뢰도를 평가하는 것이다. 크랭크 스로 부품의 소재는 S34MnV이며, 뜨임 및 풀림 열처리된 단조강이다. 본 연구에서는 설계피로강도의 신뢰도를 예측하기 위해 축 하중 일정진폭 피로시험을 수행하였다. 시험편은 평균응력 0 MPa의 동일한 응력부하를 적용하였고, 즉 응력비는 -1로 하였다. 피로시험 결과는 Dixon-Mood 접근법으로 평가하였다. 스테어케이스법에 의해 예측된 피로강도의 평균과 표준편차는 각각 296.3 MPa 및 10.6 MPa로 나타났다. 마지막으로 어떤 임의의 파손 확률에 대한 피로강도의 신뢰도를 예측하였다. 본 연구에서 제안한 예측법은 단조강의 설계 최적화를 위한 피로강도 값을 결정할 수 있다.