• 제목/요약/키워드: fatigue property: wear property

검색결과 20건 처리시간 0.03초

Mechanical and wear properties of Cu-Al-Ni-Fe-Sn-based alloy

  • Okayasu, Mitsuhiro;Izuka, Daiki;Ninomiya, Yushi;Manabe, Yuki;Shiraishi, Tetsuro
    • Advances in materials Research
    • /
    • 제2권4호
    • /
    • pp.221-235
    • /
    • 2013
  • To obtain bronze with good mechanical properties and high wear resistance, a new bronze (CADZ) is proposed on the basis of various fundamental information. The CADZ consists of the elements Al10.5, Fe4.2, Sn3.7 and Ni3.1, and its design is based on Cu-Al10.5 alloy. The Cu-10.5%Al is very hard and brittle. To obtain the high material ductility of the Cu-10.5%Al alloy, an attempt was made to add a few percent of Sn. Moreover, to make high strength of the Cu alloy, microstructure with small grains was created by the proper amount of Fe and Ni (Fe/Ni = 0.89). The mechanical properties of the CADZ sample have been examined experimentally, and those were compared with commercial bronzes. The tensile strength and wear resistance of CADZ are higher than those for commercial bronzes. Although the ductility of CADZ is the lower level, the strain to failure of CADZ is about 2.0~5.0% higher than that for the Cu-Al10.5 alloy. Details of the microstructural effects on the mechanical properties in the CADZ sample were further discussed using various experimental results.

고주파열처리 SM53C강의 기계적 성질에 관한 연구 (A Study on Mechanical Property of SM53C Steel by High Frequency Induction Hardening)

  • 김황수;김정현
    • 한국기계가공학회지
    • /
    • 제9권6호
    • /
    • pp.7-15
    • /
    • 2010
  • Recently, with the high performance and efficiency of machine, there have been required the multi-functions in various machine parts, such as the heat resistance, the abrasion resistance and the stress resistance as well as the strength. Fatigue crack growth tests were carried out to investigate the fatigue characteristics of high carbon steel (SM53C) experienced by high-frequency induction treatment. The Cam nose part of the Automobile's Cam shaft is strongly bumped with rocker arm or valve-lift. Therefore abnormal wear such as unfair wear and early wear occur in the surface. This abnormal wear causes a defect that bad timing open and close actions of the engine valve happen in the combustion chamber so the fuel gas will be combustion imperfect. Therefore, the cam shaft demands high hardness and wear resistance. In this study, high frequency heat treatment has been accomplished while wear test for material SM53C.

Surface Damage Accumulation in Alumina under the Repeated Normal-Tangential Contact Forces

  • Lee, Kwon-Yong;Choi, Sung-Jong;Youn, Ja-Woong
    • KSTLE International Journal
    • /
    • 제1권1호
    • /
    • pp.48-51
    • /
    • 2000
  • Surface damage accumulation of alumina ceramics under the cyclic stress state was analyzed. The alternating stress state in repeat pass sliding contact was simulated by a synchronized biaxial (normal and tangential) repeated indentation technique. Wear debris formation mechanism through damage accumulation and fatigue grain failure in both alumina ceramic balls and flat disks was confirmed, and the contact induced surface degradation due to fatigue cracking accumulation was quantified by measuring vertical contact displacement. Variation of structural compliance (slope of load-displacement curve) of two contacting bodies was expressed as a variation of the apparent elastic property, called pseudo-elastic constant, of the contact system.

  • PDF

유압 피스톤 펌프 소재의 피로특성 연구 (Study on Fatigue Property of Material for Oil Hydraulic Piston Pump)

  • 김남석;남기우;김현수
    • 대한기계학회논문집A
    • /
    • 제35권5호
    • /
    • pp.555-559
    • /
    • 2011
  • 본 연구는 유압 피스톤 펌프 재료로 사용되고 있는 SACM645소재를 사용하여 모재, QT(quenching & tempering) 시험편 및 QT 질화시험편의 피로특성을 조사하였다. 피로특성 조사결과는 다음과 같다. QT 질화시험편은 피로한도가 인장강도의 80%로 나타나 아주 높은 값을 나타내었다. 이것은 시험편 표면에 단단한 질화처리를 실시하여 피로균열의 발생을 지연시켰고, 피로균열이 발생하더라고 소재가 단단하여 균열진전속도가 늦었다고 판단된다. 파면 관찰결과 피로균열진전 영역에서는 모두 스트라이에이션이 관찰되었고, 피로균열진전 이외의 영역에서 QT 시험편은 벽개파괴의 양상을, 모재와 Qt 질화시험편은 딤플 파괴의 양상을 나타내었다.

고주파 담금질에 의한 SCM440강의 기계적 특성에 관한 연구 (A Study on the Mechanical Properties by High-Frequency Induction Hardening of SCM440 Steel)

  • 안석환;남기우;김태일;이문용;김동규
    • 한국해양공학회지
    • /
    • 제23권2호
    • /
    • pp.74-80
    • /
    • 2009
  • Surface hardening treatments, such as using the high-frequency induction hardening method, are widely used to increase the fatigue life and prevent the failure of materials by locally increasing the surface hardness. This method, in particular, brings an improvement in static strength by compressive residual surface stress due to the hardening. In this study, the mechanical properties of high-frequency induction hardened SCM440 steel were investigated. These results were also compared with those for base metal and a Q/T (tempering after quenching) treatment specimen. The test results showed that partially high-frequency induction hardened SCM440 steel specimens were more improved in static strength, surface hardness, fatigue limit, and anti-wear than the base metal and Q/T treatment specimens. In particular, the fatigue limit of the high-frequency induction hardened SCM440 steel increased by more than about 52% compared to that of base metal and by about 25% compared to that of the Q/T specimen.

수송기계용 Stabilizer Link의 광센서를 이용한 부품성능평가 (Analyzing Materials Property using Optical Sensing Technique of Stabilizer Link for Automobile Parts)

  • 남기우;우영만;오정환;문창권
    • 동력기계공학회지
    • /
    • 제14권6호
    • /
    • pp.47-53
    • /
    • 2010
  • A stabilizer link connects the stabilizer bar to the lower arm of the suspension. When a vehicle is turning, lateral forces from the tire are transmitted through the stabilizer link into the stabilizer bar. The stabilizer bar will twist, thus adding rigidity to the vehicle body. In this study, the stabilizer link body was manufactured by using composite material with POM-GF25%. Therefore, the strength evaluation of stability link body with composite material carried out from tensile, wear and fatigue test. The tensile strength between the stability link body with composite material and the rod with knurling was the largest of four types of rod. In Analyzing materials property using optical sensing technique of stabilizer link for automobile parts, its has been identified the safety.

크롬탄화물 용사피막의 고온마모 특성연구 (A Study on Wear Properties of Plasma Sprayed $Cr_3C_2$-NiCr Coating at High Temperature)

  • 김의현;권숙인
    • Journal of Welding and Joining
    • /
    • 제11권4호
    • /
    • pp.91-102
    • /
    • 1993
  • The plasma sprayed $Cr_3C_2$-NiCr coatings are widely used as wear-resistant and corrosion-resistant materials. The mechanical and wear properties of the plasma sprayed $Cr_3C_2$-NiCr coating on steel plate were examined in this study. The pore in the coatings could be classified into two types, the one is the intrinsic pore originated from the spraying powder, the other is the extrinsic pore formed during spraying. During the tensile adhesion test, the fracture occured at the interface of top coating and bond coating. It is though that the compressive residual stress increases with the increase of the top coating thickness. From the wear test, it was found that the wear rate increased with the increase of the sliding velocity regardless of the temperature. It is thought that the fracture toughness reduces with the increase of the sliding velocity at $30^{\circ}C$ and that the adhesion amount increases with the increase of the sliding velocity at $400^{\circ}C$ It is concluded that the wear mechanism at $30^{\circ}C$ is the fracture and pull-out of the carbide particles due to the fatigue on sliding surface, while the wear mechanism at $400^{\circ}C$ is the adhesion of the smeared layer formed during wear process.

  • PDF

Ti-6Al-4V 합금의 미세조직 및 기계적 특성에 미치는 Plasma 침탄 처리의 영향 (Improvement of Microstructural and Mechanical Properties of Ti-6Al-4V Alloy by Plasma Carburization)

  • 박용권;김택수;지태구;위명용
    • 한국재료학회지
    • /
    • 제12권5호
    • /
    • pp.341-346
    • /
    • 2002
  • In order to improve the low wear resistance of Ti-6Al-4V alloy, plasma carburization treatment was newly carried out without consumption of its good specific strength and fatigue life over the temperature. Effect of the plasma carburization was analyzed and compared with the non-treated alloy by microstructural observation, structure characterization and mechanical property test. The plasma treated alloy formed a carburized layer of about 150$\mu\textrm{m}$ in depth from the surface, where a fine and hard particles of TiC and $V_4C_3$ were homogeneously dispersed through the layer. It was also found that an increase of the wear resistance, fatigue life and hardness, due to the hard and fine dispersoids.

고엔트로피 합금의 연구동향 (Research Trends of High-entropy Alloys)

  • 박푸른솔;이호준;조영준;구본승;최원준;변종민
    • 한국분말재료학회지
    • /
    • 제26권6호
    • /
    • pp.515-527
    • /
    • 2019
  • High-entropy alloys (HEAs) are generally defined as solid solutions containing at least 5 constituent elements with concentrations between 5 and 35 atomic percent without the formation of intermetallic compounds. Currently, HEAs receive great attention as promising candidate materials for extreme environments due to their potentially desirable properties that result from their unique structural properties. In this review paper, we aim to introduce HEAs and explain their properties and related research by classifying them into three main categories, namely, mechanical properties, thermal properties, and electrochemical properties. Due to the high demand for structural materials in extreme environments, the mechanical properties of HEAs including strength, hardness, ductility, fatigue, and wear resistance are mainly described. Thermal and electrochemical properties, essential for the application of these alloys as structural materials, are also described.

이온 주입한 강의 미시적 마모 튼성의 평가 (Development of methodology for evaluating tribological properities of Ion-implanted steel)

  • 문봉호;최병영
    • 한국정밀공학회지
    • /
    • 제14권9호
    • /
    • pp.146-154
    • /
    • 1997
  • Ion implantation has been used successfully as a surface treatment technology to improve the wear. fatigue and corrosion resistances of materials. A modified surface layer by ion implantation is very thin(under 1 m), but it has different mechanical properties from the substrate. It has also different wear characteristics. Since wear is a dynamic phenomenon on interacting surfaces with relative motion, an effective method for investigtating the wear of a thin layer is the observation of wear process in microscopic detail using in-situ system. The change of wear properties produces the transition of wear mode. To know the microscopic wear mechanism of this thin layer, it is very important to clarify its microscopic wear mode. In this paper, using the SEM and AFM Rribosystems as in-situ system, the microscopic wear of Ti ion-implanted 1C-3Cr steel, a material for roller in the cold working process, was investigated in repeated sliding. The depth of wear groove and the speciffc wear amount were changed with transition of microscopic wear mode. The depth of wear groove with friction cycles in AFM tribosystem and specific wear amount of Ti ion-implanted 1C-3Cr steel were less about 2-3 times than those of non-implanted 1C-3Cr steel. The microscopic wear mechansim of Ti ion-implanted 1C-3Cr steel was also clarified. The microscopic wear property was quantitatively evaluated in terms of microscopic wear mode and specific wear amount.

  • PDF