• 제목/요약/키워드: fatigue prediction

검색결과 664건 처리시간 0.03초

되풀이 균열 선단 열림 변위를 이용한 피로 균열 열림 거동 예측을 위한 유한 요소 해석 (Finite Element Analysis for the Prediction of Fatigue Crack Opening Behavior Using Cyclic Crack Tip Opening Displacement)

  • 최현창
    • 대한기계학회논문집A
    • /
    • 제30권11호
    • /
    • pp.1455-1460
    • /
    • 2006
  • The relationship between fatigue crack growth behavior and cyclic crack tip opening displacement is studied. An elastic-plastic finite element analysis (FEA) is performed to examine the growth behavior of fatigue crack, where the contact elements are used in the mesh of the crack tip area. We investigate the relationship between the reversed plastic zone size and the changes of the cyclic crack tip opening displacement along the crack growth. We investigate the effect of the element size when predict fatigue crack opening behavior using the cyclic crack tip opening displacement obtained from FEA. The cyclic crack tip opening displacement is related to fatigue crack opening behavior.

인장-비틀림 하중에 의한 섬유강화 복합재료의 피로수명 예측 (Fatigue Life Prediction of FRP Composites under Uniaxial Tension and Pure Torsion Loadings)

  • 박성완;이장규
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 춘계학술대회 논문집
    • /
    • pp.352-361
    • /
    • 2003
  • A fatigue damage accumulation model based on the continuum damage mechanics theory was develope(1 where modules decay ratios in tension and shear on used as indicators for damage variables D . In the model, the damage variables are considered to be second-order tensors. Then the maximum principal damage variable, $D^*$ is introduced According to the similarity to the Principal stress, $D^*$ is obtained as the maximum eigen value of damage tensor [D']. Under proportional tension and torsion loadings, fatigue lives were satisfactorily predicted at any combined stress ratios using the present model in which the fatigue characteristics only under uniaxial tension and pure torsion loadings on needed. Fatigue life prediction under uniaxial tension and pure torsion loadings, was performed based on the damage mechanics using boundary element method.

  • PDF

인장-비틀림 하중에 의한 섬유강화 복합재료의 피로수명 예측 (Fatigue Life Prediction of FRP Composites under Uniaxial Tension and Pure Torsion Loadings)

  • 박성완
    • 한국공작기계학회논문집
    • /
    • 제13권6호
    • /
    • pp.64-73
    • /
    • 2004
  • A fatigue damage accumulation model based on the continuum damage mechanics theory was developed where modulus decay ratios in tension and shear were used as indicators for damage variables D. In the model, the damage variables are considered to be second-order tensors. Then, the maximum principal damage variable, $D^*$ is introduced. According to the similarity to the principal stress, $D^*$ is obtained as the maximum eigen value of damage tensor [D]. Under proportional tension and torsion loadings, fatigue lives were satisfactorily predicted at any combined stress ratios using the present model in which the Fatigue characteristics only under uniaxial tension and pure torsion loadings were needed. Fatigue life prediction under uniaxial tension and pure torsion loadings, was performed based on the damage mechanics using boundary element method.

단조 금형의 수명 평가에 관한 연구 (A Study on Life Estimation of a Forging Die)

  • 최창혁;김용조
    • 소성∙가공
    • /
    • 제16권6호
    • /
    • pp.479-487
    • /
    • 2007
  • Die life is generally estimated taking failure life and wear amount into consideration. In this study, the forging die life was investigated considering both of these two factors. The fatigue life prediction for the die was performed using the stress-life method, i.e. Goodman's and Gerber's equations. The Archard's wear model was used in the wear life simulation. These die life prediction techniques were applied to the die used in the forging process of the socket ball joint of a transportation system. A rigid-plastic finite element analysis for the die forging process of the socket ball was carried out and also the elastic stress analysis for the die set was performed in order to get basic data for the die fatigue life prediction. The wear volume of the die was measured using a 3-dimensional measurement apparatus. The simulation results were relatively in good agreement with the experimental measurements.

Fe-18Mn TWIP강의 Pre-strain에 따른 저주기 및 고주기 피로 수명 예측 모델 (A Prediction Model for Low Cycle and High Cycle Fatigue Lives of Pre-strained Fe-18Mn TWIP Steel)

  • 김용우;이종수
    • 소성∙가공
    • /
    • 제19권1호
    • /
    • pp.11-16
    • /
    • 2010
  • The influence of pre-strain on low cycle fatigue behavior of Fe-18Mn-0.05Al-0.6C TWIP steel was studied by conducting axial strain-controlled tests. As-received plates were deformed by rolling with reduction ratios of 10 and 30%, respectively. A triangular waveform with a constant frequency of 1 Hz was employed for low cycle fatigue test at the total strain amplitudes in the range of ${\pm}0.4\;{\sim}\;{\pm}0.6$ pct. The results showed that low-cycle fatigue life was strongly dependent on the amount of pre-strain as well as the strain amplitude. Increasing the amount of prestrain, the number of reversals to failure was significantly decreased at high strain amplitudes, but the effect was negligible at low strain amplitudes. A new model for predicting fatigue life of pre-strained body has been suggested by adding ${\Delta}E_{pre-strain}$ to the energy-based fatigue damage parameter. Also, high-cycle fatigue lives predicted using the low-cycle fatigue data well agreed with the experimental ones.

찢김에너지를 이용한 자동차용 방진 부품의 내구수명 예측 (Fatigue Life Prediction for Automotive Vibroisolating Rubber Component Using Tearing Energy)

  • 문형일;김호;우창수;김헌영
    • 한국자동차공학회논문집
    • /
    • 제20권6호
    • /
    • pp.100-106
    • /
    • 2012
  • Recently, the demand to acquire and improve durability performance has steadily risen in rubber components design. In design process of a rubber component, an analytical prediction is the most effective way to improve fatigue life. Existing methods of analytical estimation have mainly used an equation for fatigue life obtained from fatigue test data. However, such formula is rarely used due to costs and time required for fatigue testing, as well as randomness of rubber materials. In this paper, we describe fatigue life estimation of rubber component using only the results from a relatively simple tearing test. We estimated fatigue life of the Janggu type fatigue specimen and the automotive motor mount, and evaluated reliability of the proposed method by comparing the estimated values with actual test results.

몬테카르로 시뮬레이션에 의한 $SIC_w$/Al 복합재료의 피로수명에측 (Fatigue Life Prediction of $SIC_w$/Al Composites by Using the Monte-Carlo Simulation)

  • 안정주;권재도;김상태
    • 대한기계학회논문집A
    • /
    • 제20권5호
    • /
    • pp.1552-1561
    • /
    • 1996
  • It requires uch time and cost to obtain the fatigue crack growth life and fatigue crack growth path morphlogy from the fatigue crack growth tests. In this study, the Monte-Carlo simulation program was developed to predict the fatigue crack growth lofe and fatigue crack growth path morphology of metal matrix composites. Fatigue crack growth lives of 5%, 10%, 15%, 20%, 25% and 30% $SiC_w$/Al composites were predicted by usign the Monte-Carlo Simulation. And the fatigue crack growth lives of 25% $SiC_w$/Al and Almatrix from Monte-carlo simulation were compared with fatigue life from experiments in order to verify the accuracy of Monte-Carlo Simulation program.

부식을 고려한 항공기재료의 부식피로수명예측 연구 (A Study on the Fatigue Life Prediction of Al-2024 with Corrosion)

  • 김위대
    • 한국항공우주학회지
    • /
    • 제35권1호
    • /
    • pp.46-51
    • /
    • 2007
  • 연구는 Al 2024-T3511 재료를 사용하여 피로균열성장 시험을 통한 비부식과 부식에서의 일정진폭 피로균열 전파 테이터(a-N)를 구하여 비부식과 부식에서의 균열진전의 차이를 규명하였다. 또한 비부식과 부식에서의 균열진전 속도 선도(da/dN-${\Delta}K$)를 구하여 Paris의 식을 이용하여 비부식과 부식의 차이를 규명하였다. 그리고 ${\beta}c$(corrosion factor)의 새로운 개념을 도입하여 피로수명을 예측해 본 결과 실험치를 잘 모사할 수 있었다.

Finite element procedures for the numerical simulation of fatigue crack propagation under mixed mode loading

  • Alshoaibi, Abdulnaser M.
    • Structural Engineering and Mechanics
    • /
    • 제35권3호
    • /
    • pp.283-299
    • /
    • 2010
  • This paper addresses the numerical simulation of fatigue crack growth in arbitrary 2D geometries under constant amplitude loading by the using a new finite element software. The purpose of this software is on the determination of 2D crack paths and surfaces as well as on the evaluation of components Lifetimes as a part of the damage tolerant assessment. Throughout the simulation of fatigue crack propagation an automatic adaptive mesh is carried out in the vicinity of the crack front nodes and in the elements which represent the higher stresses distribution. The fatigue crack direction and the corresponding stress-intensity factors are estimated at each small crack increment by employing the displacement extrapolation technique under facilitation of singular crack tip elements. The propagation is modeled by successive linear extensions, which are determined by the stress intensity factors under linear elastic fracture mechanics (LEFM) assumption. The stress intensity factors range history must be recorded along the small crack increments. Upon completion of the stress intensity factors range history recording, fatigue crack propagation life of the examined specimen is predicted. A consistent transfer algorithm and a crack relaxation method are proposed and implemented for this purpose. Verification of the predicted fatigue life is validated with relevant experimental data and numerical results obtained by other researchers. The comparisons show that the program is capable of demonstrating the fatigue life prediction results as well as the fatigue crack path satisfactorily.

재질열화가 표면 균열 진전에 미치는 영향과 수명 예측에 관한 연구 (Effect of Temper-Embrittlement on Surface Crack Growth and Fatigue Life Prediction)

  • 권재도
    • 대한기계학회논문집
    • /
    • 제13권5호
    • /
    • pp.921-927
    • /
    • 1989
  • 본 연구에서는 피로 균열의 진전 특성 및 표면 균열과 같은 3차원 균열의 진전 특성에 나타나는 재질 열화의 영향, 열화와 피로 파괴 형태의 관계, 균열진전 속도의 분산(scattering)과 열화의 관계등에 주목해서 열화재와 회복재의 2종류의 재료를 사용해, 피로 시험에 의한 균열진전의 실험적 특성을 고찰하였다. 또한, 저자들의 종래 관통 균열 진전 특성에 대한 연구 결과를 응용해서 열화와 균열진전의 확률특성을 고려한 표면균열 진전에 대한 시뮬레이션(simulation)을 행해서 피로 수명 예측에 미치는 열화의 영향에 대해 검토해 보았다.