Fatigue Life Prediction of FRP Composites under Uniaxial Tension and Pure Torsion Loadings

인장-비틀림 하중에 의한 섬유강화 복합재료의 피로수명 예측

  • 박성완 (인천전문대학 컴퓨터응용기계설계과)
  • Published : 2004.12.01

Abstract

A fatigue damage accumulation model based on the continuum damage mechanics theory was developed where modulus decay ratios in tension and shear were used as indicators for damage variables D. In the model, the damage variables are considered to be second-order tensors. Then, the maximum principal damage variable, $D^*$ is introduced. According to the similarity to the principal stress, $D^*$ is obtained as the maximum eigen value of damage tensor [D]. Under proportional tension and torsion loadings, fatigue lives were satisfactorily predicted at any combined stress ratios using the present model in which the Fatigue characteristics only under uniaxial tension and pure torsion loadings were needed. Fatigue life prediction under uniaxial tension and pure torsion loadings, was performed based on the damage mechanics using boundary element method.

Keywords

References

  1. Miner, M. A., 1945, 'Cumulative damage in fatigue,' J. Appl. Mech., 12, pp. 159-164
  2. Downing, S. D., and Socie, D. F, 1982, 'Simple rainflow counting algorithms,' Int. J. Fatigue, Vol. 4, pp. 31-40 https://doi.org/10.1016/0142-1123(82)90018-4
  3. Reifsnider, K. L., and Jamison, R., 1982, 'Fracture of fatigue-loaded composite laminates,' Int. J. Fatigue, Oct., pp. 187-197
  4. Caprion, G., Halpin, J, C., and Nicolais, L., 1979, 'Fracture mechanics in composite materials,' Composite, Oct., pp. 223-227 https://doi.org/10.1016/0010-4361(79)90023-5
  5. Murakami, S., 1982, 'Damage Mechanics-Continuum Mechanics Approach to Damage and Fracture of Materials-,' materials, Vol. 31, No. 340, pp. 1-13
  6. Zako, M., Tsujikami, T., and Yoshizawa, H., 1990, 'A Method of Fatigue Life Prediction for Composite Materials-In Case of Prediction based on the Extension Mode-,' Materials, Vol. 39, No. 441, pp. 701-705
  7. Krempl, E., and Miu, T.-M., 1982, 'Graphite/ Epoxy $[45]_{8}$ Tubes. Their Static Axial and Shear Properties and Their Fatigue Behavior under Completely Reversed Load Controlled Loading,' Journal of Composite Materials, Vol. 16, pp. 172-187 https://doi.org/10.1177/002199838201600302
  8. Iwasaki, C., Ikai, Y., and Matsuda, M., 1986, 'Estimation of fatigue Damage by Means of Internal Stress and Effective Stress,' Materials, Vol. 36, No. 409, pp. 1046-1052
  9. Charrewicz, A, and Daniel, I. M., 1986, 'Damage Mechanisms and Accumulation in Graphite/Epoxy Laminates,' Composite Material: Fatigue and Fracture, ASTM STP 907, pp. 204-297
  10. Poursartip, A., and Beaumont, P. W. R., 1986, 'The Fatigue Damage Mechanics of a Carbon Fibre Composite Laminate: I -Measurements Damage and Strength,' Composite Science and Technology, Vol. 25, pp. 193-218 https://doi.org/10.1016/0266-3538(86)90010-2
  11. Poursartip, A, and Beaumont, P. W. R., 1986, 'The Fatigue Damage Mechanics of a Carbon Fibre Composite Laminate: II -Life Prediction,' Composite Science and Technology, Vol. 25, pp. 283-299 https://doi.org/10.1016/0266-3538(86)90045-X
  12. Smiley, A, J., and Pipes, R, B., 1986, 'Rate Effects on Mode I Interlaminar Fracture Toughness in Composite Materials,' Journal of Composite Materials, Vol. 21, pp. 670-687 https://doi.org/10.1177/002199838702100706
  13. Hwang, W., and Han, K. S., 1986, 'Fatigue of Composites-Fatigue Modulus Concept and Life Prediction,' J. Composite Materials, Vol. 20, pp. 154-165
  14. Charewicz, A., and Daniel, I. M., 1986, 'Damage Mechanisms and Accumulation in Graphite/ Epoxy Laminates,' ASTM 907, pp. 274-297
  15. Krajcinovic, L., 1987, 'Continuum Damage Mechanics Theory and Applications,' Courses and Lectures, No. 295
  16. Jessen, S. M., and Plumtree, A., 1991, 'Continuum damage mechanics applied to cyclic behavior of a glass fibre composite pultrusion,' Composite, Vol. 22, No.3, pp. 181-190 https://doi.org/10.1016/0010-4361(91)90317-A
  17. Hashin, Z., 1981, 'Fatigue failure criteria for combined cyclic stress,' Int. J. Fracture, Vol. 17, pp. 101-109 https://doi.org/10.1007/BF00053514
  18. Morita, Y., Lin, F., and Fujii, T., 1995, 'Fatigue Damage Evaluation of Plain Woven GFRP under Tension/Torsion Biaxial Loading,' JSME(A), Vol. 61, No. 583, pp. 493-500 https://doi.org/10.1299/kikaia.61.493
  19. Srawley, J. E., 1976, 'Wide Range Stress Intensity Factor Expressions for ASTM E399 Standard Fracture Toughness Specimens,' Int. J. Frac. Mech., Vol. 12, pp. 475-476
  20. Flasker, J., and Pehan, S., 1993, 'Crack Propagation in Tooth Root with Variable Loading,' Comm.in Numer. Meth. in Eng., Vol. 9, pp. 103-110 https://doi.org/10.1002/cnm.1640090203
  21. Murakami, S., 1988, 'Mechanical Modeling of Material Damage,' ASME J. Appl. Mech., Vol. 55, No.2, pp. 22-28
  22. Ye, L., 1989, 'On Fatigue Damage Accumulation and Material Degradation in Composite Materials,' Composite Science and Technology, Vol. 39, pp. 339-350
  23. Sturgeon, J. B., 1997, 'Fatigue of multi-directional caron fibre-reinforced plastics,' Composite, Oct., pp. 221-225
  24. Harris, B., 1997, 'Fatigue and accumulation of damage in reinforced plastics,' Composites, pp. 214-220
  25. Park, S. O., 2001, 'Analysis of Spiral Bevel Gear by Inverse Problem,' Transaction of KSMTE, Vol. 10, No.5, pp. 85-95
  26. Park, S. O., 2003, 'Analysis of Torque on Spur Gear by Inverse Problem,' Transaction of KSMTE, Vol. 12, No.5, pp. 24-33