• 제목/요약/키워드: fatigue fracture

검색결과 1,091건 처리시간 0.027초

형상인식법을 이용한 음향방출신호의 분류 (Discrimination of Acoustic Emission Signals using Pattern Recognition Analysis)

  • 주영상;정현규;심철무;임형택
    • 비파괴검사학회지
    • /
    • 제10권2호
    • /
    • pp.23-31
    • /
    • 1990
  • Acoustic Emission(AE) signals obtained during fracture toughness test and fatigue test for nuclear pressure vessel material(SA 508 cl.3) and artificial AE signals from pencil break and ultrasonic pulser were classified using pattern recognition methods. Three different classifiers ; namely Minimum Distance Classifier, Linear Discriminant Classifier and Maximum Likelihood Classifier were used for pattern recognition. In this study, the performance of each classifier was compared. The discrimination of AE signals from cracking and crack surface rubbing was possible and the analysis for crack propagation was applicable by pattern recognition methods.

  • PDF

티타늄합금의 래핑가공에 관한 실험적 연구 (An Experimental Study on the Lapping of Titanium Alloy)

  • 박지호;김원일
    • 한국산업융합학회 논문집
    • /
    • 제8권1호
    • /
    • pp.25-29
    • /
    • 2005
  • Titanium specially has high specific strength, excellent mechanical properties as fatigue strength and fracture ductility, good corrosion resistance, and therefore are broadly applied to the various fields. It is required the developmennt for the skills of wire-cut electrical discharge machining(WEDM), but the WEDMed surface was found to be worst due to the attached components of wire. Therefore precision maching method like lapping is necessary for getting high quilty surface. Roughness of lapped surface, surface hardness to each process depth and improved method of surface shape were stuided experimentally, by changing of grain size of diamond lap material and lapping pressure with constant speed in lapping process.

  • PDF

비균질재료의 표면균열에 대한 응력확대계수 해석 (Stress Intensity Factor Analysis for Surface Crack in Inhomogeneous Materials)

  • 김준수;이준성
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.816-819
    • /
    • 2002
  • Accurate stress intensity factor analyses and crack growth rate of surface-cracked components in inhomogeneous materials are needed for reliable prediction of their fatigue lift and fracture strengths. This paper describes an automated system for analyzing the stress intensity factors of three-dimensional (3D) cracks in inhomogeneous materials. 3D finite element method (FEM) was used to obtain the stress intensity factor for subsurface cracks and surface cracks existing in inhomogeneous materials. To examine accuracy and efficiency of the present system, the stress intensity factor for a semi-elliptical surface crack in a plate subjected to uniform tension is calculated, and compared with Raju-Newman's solutions. Then the system is applied to analyze cladding effect of subsurface cracks in inhomogeneous materials. The results were compared with those surface cracks in homogeneous materials. It is clearly demonstrated from these analyses that the stress intensity factors for subsurface cracks are less than those of surface cracks.

  • PDF

연속압입시험법을 이용한 원전구조물의 잔류응력 평가를 위한 접촉깊이의 보정 (Calibration of Contact Depth for Evaluating Residual Stress using Instrumented Indentation Testing)

  • 김영천;강승균;안희준;김광호;권동일
    • 한국압력기기공학회 논문집
    • /
    • 제7권1호
    • /
    • pp.41-47
    • /
    • 2011
  • Residual stress is the key parameter for reliability and lifetime assessment because it can reduce the fatigue strength and fracture properties of industrial structures. Recently, instrumented indentation testing (IIT) has been widely used for evaluating it, since it does not need specific specimen and time-consuming procedure. However, conventional Oliver-Pharr method, which is used for calibrating contact depth to analyze indentation load-depth curve, cannot estimate plastic pile-up between indenter and surface of specimen. Here, we introduce f parameter which is the ratio of contact depth and maximum depth, to consider pile-up height. And, its application for evaluating residual stress of weldment is introduced.

A new formulation of the J integral of bonded composite repair in aircraft structures

  • Serier, Nassim;Mechab, Belaid;Mhamdia, Rachid;Serier, Boualem
    • Structural Engineering and Mechanics
    • /
    • 제58권5호
    • /
    • pp.745-755
    • /
    • 2016
  • A three-dimensional finite element method is used for analysis of repairing cracks in plates with bonded composite patch in elastic and elastic plastic analysis. This study was performed in order to establish an analytical model of the J-integral for repair crack. This formulation of the J-integral to establish models of fatigue crack growth in repairing aircraft structures. The model was developed by interpolation of numerical results. The obtained results were compared with those calculated with the finite element method. It was found that our model gives a good agreement of the J-integral. The arrow shape reduces the J integral at the crack tip, which improves the repair efficiency.

균열진 구조물의 피로수명 연장을 위한 Patch 설계기법에 관한 연구 (A Study on Patch Design Technique for Fatigue Life Prolongation of Cracked Structures)

  • 한문식
    • 대한조선학회논문집
    • /
    • 제29권2호
    • /
    • pp.79-91
    • /
    • 1992
  • 본 논문에서는 균열 보수에 사용되는 Patch와 균열진 판 사이에 컴프라이언스 개념을 적용하여 Patch된 균열진 판의 응력확대계수를 이론유도하고, 이에 대한 실험과 균열진전 거동규명을 통하여 그 유효성을 충분히 검증하였다. 또한, 이와같은 컴프라이언스를 이용한 이론방법을 바탕으로 균열진 구조물의 잔존수명이 고려된 Patch를 간단히 설계할 수 있는 기법을 제시하였다.

  • PDF

장척레일 축력 비교 연구 (A comparison study for the Axial forte of Longer Rail)

  • 민경주;이성욱;박대희
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집
    • /
    • pp.516-528
    • /
    • 2009
  • Form the application of long rail system the non-ballast steel plate bridges, fatigue strength increase and rail noise reduction can be expected. This is mainly form the reduction of the rail impact at the rail joint locations which already made to behave together from welds. In the high speed rail, application of long rail system is essential because without long rail system, the required serviceability level can not be achieved. But even with this long rail systems, the thermal expansion from the girder can not be absorbed in the normal bearing systems, and these expansion cause between girder and rail. Also unexpected rail buckling and fracture through rail thermal tension may happen. It was found through numerical analysis and field measurement that these problems can be avoided by semi-fixed bearing system. In this study, the benefits of non-ballast plate bridge through long rail system, especially at the point of girder stability, girder stiffness increase and bearing maintenance will be reviewed.

  • PDF

니켈기 초내열 713LC 합금의 고온 기계적 특성 (High Temperature Mechanical Properties of 713LC Ni-based Superalloy)

  • 나영상;김종엽;이종훈;박노광
    • 연구논문집
    • /
    • 통권33호
    • /
    • pp.167-174
    • /
    • 2003
  • Alloy 713LC was developed to improve the tensile strength and ductility by reducing the carbon content of Alloy 713C. As Alloy 713LC was designed to minimize the mechanical property change with process conditions, it is generally utilized in the parts which have thick and thin sections simultaneously. In the thick and the thin sections, quite different properties are required. Consequently it is essential to crucially control the local mechanical properties of a parts by optimizing the process condition and heat treatment. In this research, high temperature mechanical properties including creep-rupture and strain-control low cycle fatigue were investigated together with the microstructural variations with heat treatment. Failure mechanism was also analyzed by observing the fracture surface to correlate the variation of mechanical properties with the microstructural change.

  • PDF

방진합금기술의 특허동향 (The Trend of Damping Alloys Patent)

  • 김종헌;김창규;곽희환
    • 한국주조공학회지
    • /
    • 제32권6호
    • /
    • pp.305-312
    • /
    • 2012
  • As the industrial civilization develops, humankind can expect to receive the convenience and richness. But the various by-product which it leaves as the pollution threatens the natural environment. Especially, noise and vibration of these pollutions are causative of the mental instability and hard of hearing. In addition, they cause the performance degradation of the precision instrument and the early rising fatigue fracture of parts of precision instrument from the industry side. So recently interest in the damping technology and damping alloy is increasing. Therefore, in order to grasp the advanced technology of the damping alloy, we analyzed global techniques and patents information in this paper.

전동차 차륜의 반복 구름 접촉에 의한 피로균열 전파에 관한 연구 (A Study on Fatigue Crack Growth of an EMU Wheel due to Repeated Rolling Contacts)

  • 김호경;이덕규
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 추계학술대회 논문집
    • /
    • pp.595-600
    • /
    • 2004
  • The EMU wheel is one of the most important component for the vehicle safety. For the tensile, fracture toughness and crack propagation tests, several specimens were collected from actual wheels. FEM ,analysis also was performed on the crack that was assumed to be 15 mm in depth under the wheel tread surface. The stress intensity factors $K_{I}$ and $K_{II}$ at the crack tip under the stress ($P_{max}$ = 911.5 MPa) due to a rolling contact were analyzed for crack growth characteristics. As a result, the perpendicular crack was found to be more dangerous compared to the parallel one.

  • PDF