• 제목/요약/키워드: fatigue fracture

검색결과 1,091건 처리시간 0.029초

Changes In Mechanical Strength of Compression HIP Screws in Relation to Design Variations - A Biomechanical Analysis

  • Moon S. J.;Lee H. S.;Jun S. C.;Jung T. G.;Ahn S. Y.;Lee H.;Lee S. J.
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권2호
    • /
    • pp.123-127
    • /
    • 2005
  • Compression Hip Screw (CHS) is one of the most widely-used prostheses for the treatment of intertrochanteric fractures because of its strong fixation capability. Fractures at the neck and screw holes are frequently noted as some of its clinical drawbacks, which warrant more in-depth biomechanical analysis on its design variables. The purpose of this study was to evaluate changes in the strength with respect to the changes in design such as the plate thickness and the number of screw holes. Both mechanical test and FEM analysis were used to systematically investigate the sensitivities of the above-mentioned design variables. For the first part of the mechanical test, CHS (n=20) were tested until failure. The CHS specimens were classified into four groups: Group Ⅰ was the control group with the neck thickness of 6-㎜ and 5 screw holes on the side plate, Group Ⅱ 6-㎜ thick and 8 holes, Group Ⅲ 7.5-㎜ thick and 5 holes, and Group Ⅳ 7.5-㎜ thick and 8 holes. Then, the fatigue test was done for each group by imparting 50% and 75% of the failure loads for one million cycles. For the FEM analysis, FE models were made for each group. Appropriate loading and boundary conditions were applied based on the failure test results. Stresses were assessed. Mechanical test results indicated that the failure strength increased dramatically by 80% with thicker plate. However, the strength remained unchanged or decreased slightly despite the increase in number of holes. These results indicated the higher sensitivity of plate thickness to the implant strength. No fatigue failures were observed which suggested the implant could withstand at least one million cycles of fatigue load regardless of the design changes. Our FEM results also supported the above results by showing a similar trend in stress as those of mechanical test. In summary, our biomechanical results were able to show that plate thickness could be a more important variable in design for reinforcing the strength of CHS than the number of screw holes.

기계적 및 열적 피로가 교정용 접착제의 결합강도에 미치는 영향 (THE EFFECTS OF MECHANICAL AND THERMAL FATIGUE ON THE SHEAR BOND STRENGTH OF ORTHODONTIC ADHESIVES)

  • 신완철;김종성;김정기
    • 대한치과교정학회지
    • /
    • 제26권2호
    • /
    • pp.175-186
    • /
    • 1996
  • 본 연구의 목적은 기계적 및 열적피로가 전단결합강도에 미치는 영향을 알아보기위한 것이다. 3종의 비반죽형 접착제(Ortho-one, $MonoLok^2,\;System\;1^+$)로 mesh형의 금속 브라켓(Ormesh)을 교정목적으로 발거된 소구치의 법랑질면을 평탄하게 한 후 부착하고 100만회의 반복비틀림과 1,000회의 thermocycling을 가하였다. 그 후 Instron을 이용하여 전단결합강도를 측정하여 다음과 같은 결과를 얻었다. 1. 접착제의 Knoop 경도치는 thermocycling 전에는 $Monolok^2$$64.03kg/mm^2$으로 가장 크고, $System\;1^+$$31.60kg/mm^2$으로 가장 작았으며, thermocycling 후에도 $Monolok^2$$38.08kg/mm^2$로 가장 크고 $System\;1^+$$20.87kg/mm^2$로 가장 작았다. thermocycling 전후 비교시 Ortho-one, $Monolok^2,\;System\;1^+$ 모두에서 유의한 감소를 보였다(P<0.01). 2. 정적 시험군의 전단결합강도는 세 군 간에 유의한 차를 보이지 않았다(P>0.01). 3. 1,000회의 thermocycling 후의 전단결합강도는 $Monolok^2$ 군이 19.34MPa로 가장크고 Ortho-one 군이 13.66MPa로 가장 작게 나타났으며, thermocycling 전과 비교시 Ortho-one 군(P<0.01), $System\;1^+$군(P<0.05) 에서 유의 한 감소를 보였다. 4. 100만회의 반복 비틀림을 가한 후의 전단결합강도는 세 군에서 유사하였으며, 피로시험전과 비교시 세 군 모두 유의한 감소를 보이지 않았다(P>0.01). 5. 접착계면의 파절양상은 모든 군에서 실험조건에 관계없이 주로 브라켓/레진 계면에서 나타났다.

  • PDF

포장성능관련 역학적 특성이 고려된 아스팔트 혼합물의 배합설계법 개발 방안 (Methodology for Developing HMA Mix Design Taking into Account Performance-Related Mechanistic Properties)

  • 김부일;이문섭;김광우
    • 한국도로학회논문집
    • /
    • 제8권1호
    • /
    • pp.15-23
    • /
    • 2006
  • 현재의 마샬 배합설계는 공극률, VFA. VMA와 함께 가열 아스팔트 혼합물의 현장 공용성과 관련이 적은 안정도와 흐름값을 포함하고 있다. 게다가, 안정도와 흐름값은 거의 대부분 기준값에 만족하며. 최적 아스팔트 함량(OAC)은 공극률, VFA, VMA와 같은 용적특성에 의해 결정되고 있다. 그러므로 많은 연구자들은 현장 공용성과 관계를 가지는 혼합물을 만들기 위하여 안정도와 흐름값을 대신할 수 있는 역학적 특성에 관심을 가지고 있다. 본 연구에서는 마샬 배합설계방법의 안정도와 흐름값을 대신하여 역학적 특성과 관련있는 변형강도$(S_D)$와 파괴에너지(FE)를 도입하는 배합설계를 제안할 것이다. Kim test로부터 소성변형 저항성과 상관성이 높은 변형강도$(S_D)$와, 간접인장시험으로부터 피로균열을 모사하는 파괴에너지 (FE)를 도입하였다. 현재의 배합설계방법과 제안한 배합설계 방법을 비교하기 위하여 4가지 아스팔트 흔합물을 사용하였다. 제안한 배합설계가 현재의 배합설계방법에 비해 OAC결정에 역학적 특성이 반영되는 결과를 볼 수 있었다.

  • PDF

CFRP 적층판으로 보강된 철근콘크리트보의 신뢰성평가 (Reliability Assessment of Reinforced Concrete Beams Strengthened by CFRP Laminates)

  • 조효남;최영민
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.160-166
    • /
    • 1994
  • In general, the problems of strengthening and repairing of deteriorated or damaged reinforced concrete members are usually worked out in situ by externally bounding steel plates using epoxy resins, which has been recognized to be one of effective and convenient methods. But the disadvantages of strengthening/repairing concrete members with externally bonded steel plates include ; (a) deterioration of the bond at the steel-concrete interface caused by the corrosion of steel ; (b) difficulty in manipulating the plate at the construction site ; (c) improper formation of joints, due to the limited delivery lengths of the steel plates ; and etc. Therefore these difficulties eventually have led to the concept of replacing the steel plates by fiber-reinforced composite sheets which are characterized by their light weight, extremely high stiffness, excellent fatigue properties, and outstanding corrosion resistance. In the paper, for the reliability assessment of reinforced concrete beams externally strengthened by carbon fiber plastic(CFRP) laminates, an attempt is made to suggest a limit state model based on the strain compatibility method and the concept of fracture mechanics. And the reliability of the proposed models is evaluated by using the AFOSM method. The load carrying capacity of the deteriorated and/or damaged RC beams is considerably increased. Thus, it may be stated that the post-strengthening of concrete beams with externally bonded CFRP materials may be one of very effective way of increasing the load carrying capacity and stiffeness characteristics of existing structures.

  • PDF

ABAQUS 서브루틴을 이용한 레일 보수용접 잔류응력 해석 (Residual Stress Analysis of Repair Welded Rail Using the ABAQUS User Subroutine)

  • 김동욱;전현규;이상환;장윤석
    • 한국정밀공학회지
    • /
    • 제33권7호
    • /
    • pp.551-558
    • /
    • 2016
  • Reduction of welding residual stress is very important in the railway industry, but calculating its distribution in structures is difficult because welding residual stress formation is influenced by various parameters. In this study, we developed a finite element model for simulating the repair welding process to recover a surface damaged rail, and conducted a series of parametric studies while varying the cooling rate and the duration of post weld heat treatment (PWHT) to find the best conditions for reducing welding residual stress level. This paper presents a three-dimensional model of the repair welding process considering the phase transformation effect implemented by the ABAQUS user subroutine, and the results of parametric studies with various cooling rates and PWHT durations. We found that heat treatment significantly reduced the residual stress on the upper rail by about 170 MPa.

방적기계용 스핀들 인서트의 최적설계 관한 연구 (The Study for Optimal Design of Spindle Insert used in Cotton Spinning Machine)

  • 이동우;허선철;이상석;심재준
    • 한국정밀공학회지
    • /
    • 제27권4호
    • /
    • pp.72-78
    • /
    • 2010
  • Textile machinery affects various industry, such as sport leisure industry, metal and chemistry material, electric electron, mechanical energy, packing and printing industry. In case of design of textile machine, the very important fact is absorbing the minute vibration induced by spinning thread and insert which is the part of spindle plays a role of reduction of impact caused by oscillation of thread bobbin. Therefore, Optimal design was executed by design of experiments and kriging optimal design methods to prevent fracture of spindle insert under the fatigue condition and deduced the best value of design parameter to improve the stability of the products. The highest sensitivity is showed at the design parameter A and D. As the spiral number of insert is increase, tension force applied its edge is distributed at whole model and the stress concentration is reduced.

발사환경에 대한 위성 전장품의 구조진동 해석 (Structural Vibration Analysis of Electronic Equipment for Satellite under Launch Environments)

  • 정일호;박태원;한상원;서종휘;김성훈
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.120-128
    • /
    • 2004
  • The impulse between launch vehicle and atmosphere can generate a lot of noise and vibration during the process of launching a satellite. Structurally, the electronic equipment of a satellite consists of an aluminum case containing PCB. Each PCB has resistors and IC. Noise and vibration of the wide frequency band are transferred to the inside of fairing, subsequently creating vibration of the electronic equipment of the satellite. In this situation, random vibration can cause malfunctioning of the electronic equipment of the device. Furthermore, when the frequency of random vibration meets with natural frequency of PCB, fatigue fracture may occur in the part of solder joint. The launching environment, thus, needs to be carefully considered when designing the electronic equipment of a satellite. In general, the safety of the electronic equipment is supposed to be related to the natural frequency, shapes of mode and dynamic deflection of PCB in the electronic equipment. Structural vibration analysis of PCB and its electronic components can be performed using either FEM or vibration test. In this study, the natural frequency and dynamic deflection of PCB are measured by FEM, and the safety of the electronic components of PCB is evaluated according to the results. This study presents a unique method for finite element modeling and analysis of PCB and its electronic components. The results of FEA are verified by vibration test. The method proposed herein may be applicable to various designs ranging from the electronic equipments of a satellite to home electronics.

Mitigation of seismic drift response of braced frames using short yielding-core BRBs

  • Pandikkadavath, Muhamed Safeer;Sahoo, Dipti Ranjan
    • Steel and Composite Structures
    • /
    • 제23권3호
    • /
    • pp.285-302
    • /
    • 2017
  • Buckling-restrained braced frames (BRBFs) are commonly used as the lateral force-resisting systems in building structures in the seismic regions. The nearly-symmetric hysteretic response and the delayed brace core fracture of buckling-restrained braces (BRBs) under the axial cyclic loading provide the adequate lateral force and deformation capacity to BRBFs under the earthquake excitation. However, the smaller axial stiffness of BRBs result in the undesirable higher residual drift response of BRBFs in the post-earthquake scenario. Two alternative approaches are investigated in this study to improve the elastic axial stiffness of BRBs, namely, (i) by shortening the yielding cores of BRBs; and (ii) by reducing the BRB assemblies and adding the elastic brace segments in series. In order to obtain the limiting yielding core lengths of BRBs, a modified approach based on Coffin-Manson relationship and the higher mode compression buckling criteria has been proposed in this study. Both non-linear static and dynamic analyses are carried out to analytically evaluate the seismic response of BRBFs fitted with short-core BRBs of two medium-rise building frames. Analysis results showed that the proposed brace systems are effective in reducing the inter-story and residual drift response of braced frames without any significant change in the story shear and the displacement ductility demands.

재활용 횟수에 따른 폴리프로필렌 및 탄소섬유 강화 PP 복합재료의 물성 변화 관찰 (Investigation of Mechanical Property of Polypropylene and CF/PP Composites with Number of Recycle)

  • 권동준;왕작가;이태웅;박종만
    • Composites Research
    • /
    • 제26권5호
    • /
    • pp.303-308
    • /
    • 2013
  • 탄소섬유(CF) 강화 폴리프로필렌(PP) 복합재료의 수요는 증가되고 있다. 본 연구에서는 재활용 횟수에 따라 변화되는 복합재료의 물성 변화를 관찰하였다. CF 함량을 20% 함량으로 조성한 복합재료에 대해서 재활용 횟수에 따른 기계적 물성 평가를 진행하였다. 인장, 굴곡, Izod 동적 피로 실험에 따른 영향을 확인하였다. CF/PP 복합재료의 계면 물성을 평가하기 위해 젖음성 평가와 파단면을 FE-SEM으로 확인하였다. 재활용 횟수에 따라 섬유와 기지는 변화된다. CF/PP 복합재료는 재활용 할수록 섬유와 기지간의 계면에 열 데미지와 분쇄 과정에 의한 결합력 감소가 확인하였다.