• 제목/요약/키워드: fatigue crack growth test

검색결과 305건 처리시간 0.023초

피로균열성장시험에서 하한계 응력확대계수의 결정 (Determination of the Threshold Stress Intensity Factor in Fatigue Crack Growth Test)

  • 허성필;석창성;양원호
    • 한국안전학회지
    • /
    • 제15권3호
    • /
    • pp.1-6
    • /
    • 2000
  • In fatigue crack growth test, it is important not only to analyze characteristics of fatigue crack growth but also to determine the threshold stress intensity factor, ${\Delta}K_{th}$. which is the threshold value of fatigue crack growth. Linear regression analysis using fatigue test data near the threshold is suggested to determine the ${\Delta}K_{th}$ in the standard test method but the ${\Delta}K_{th}$ can be affected by a fitting method. And there are some limitations on the linear regression analysis in the case of small number of test data near the threshold. The objective of this study is to investigate differences of the ${\Delta}K_{th}$ due to regression analysis method and to evaluate the relative error range of the ${\Delta}K_{th}$ in same fatigue crack growth test data.

  • PDF

피로균열 성장과정에 대한 평가방법의 영향 (Influence of Evaluation Methods for Fatigue Crack Growth Process)

  • 안철봉
    • 한국생산제조학회지
    • /
    • 제8권1호
    • /
    • pp.119-125
    • /
    • 1999
  • The distribution of fatigue crack growth rate is subjected to the measuring interval and calculated method of growth rate. In this paper, in order to establish the method of determining the distribution of fatigue crack growth rate, which ignores those influences, a series of fatigue crack growth experiments and measuring intervals of crack length calculated reasonable are presented. The main conclusions obtained are summarized as follows: 1) As a result of the ΔP constant test and ΔK constant test, it is thought that an approximate measuring interval of 0.3~0.7mm is reasonable, which allows for few errors and is little subjected to the calculated method of crack growth rate. 2) After generally comparing the error estimation by using the experimental data of CCT specimen with the error rating of the CT specimens, it is possible that the fatigue test has few errors within the measuring interval, ξ(Δa/W)=0.0067~0.017, regardless of the dimension of specimen geometry.

  • PDF

단일 및 혼합모드하에서 304스테인리스강의 피로균열 진전속도와 방향특성 (Fatigue Crack Growth Rates and Directions in STS304 under Mode I and Mixed Mode)

  • 권종완;양현태
    • 한국공작기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.102-109
    • /
    • 2002
  • The fatigue crack growth under mixed mode condition has been discussed within the scope of linear fracture mechanics such as maximum tangential stress, maximum tangential principal stress and minimum strain energy density. The purpose of this study is to investigate the characteristics of fatigue test crack growth in 304 stainless steel under mixed node. The fatigue test results carried out by using inclined pre-crack specimens was compared to both of the theoretical predictions of the criteria, maximum tangential stress and stain energy density. As difference from theoretical analysis, the transition region from mixed mode to mode I appeared in the fatigue test. There is deep relationship between the angle of slanted pre-crack and transition. Therefore, as applying the different stress intensity factor to each node I+II and mode I, the directions and rates of fatigue crack growth are evaluated more accurately under mixed mode.

2 1/4 Cr-1Mo강의 작은 표면균열의 성장에 관한 기초적 연구 (A Basic Study on Growth Characteristics of the Small Surface Crack in 21/4 Cr-1 Mo Steel)

  • 서창민;강용구
    • 한국해양공학회지
    • /
    • 제1권1호
    • /
    • pp.104-110
    • /
    • 1987
  • Fatigue tests by axial loading (R = 0.05) were carried out to investigate fatigue crack growth characteristics of small surface cracks in 2 1/4 Cr-1 Mo steel at room temperature by using flat specimens with a small artificial pit. All the data of the fatigue crack growth rate obtained in the present test are determined as a function of the stress intensity factor range about a semi-elliptical crack, so that the application of linear fracture mechanics to the surface fatigue crack growth and to the fatigue crack growth into depth, and all the data obtained from tests were discussed in comparison with the data of Type 304 stainless steel and two type of mild steel under the same test conditions. The obtained results are as follows: 1)When the cycle ratios are same, surface fatigue crack length and its depth are almost same and fall within a narrow scatter band in spite of different stress levels. 2)Relations of the surface fatigue crack growth rate (da/dN) and fatigue crack growth rate into depth (db/dN) to its stress intensity factor range ($\Delta K_{Ia}, \Delta K_{Ib}$) can be plotted as a straight line at log-log diagram without dependence of stress level and coincide with the data of part-through crack in various steels.

  • PDF

Creep-Fatigue Crack Growth Behavior of a Structure with Crack Like Defects at the Welds

  • Lee, Hyeong-Yeon;Kim, Seok-Hoon;Lee, Jae-Han;Kim, Byung-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제20권12호
    • /
    • pp.2136-2146
    • /
    • 2006
  • A study on a creep-fatigue crack growth behavior has been carried out for a cylindrical structure with weldments by using a structural test and an evaluation according to the assessment procedures. The creep-fatigue crack growth behavior following the creep-fatigue crack initiation has been assessed by using the French A16 procedure and the conservatism for the present structural test has been examined. The structural specimen is a welded cylindrical shell made of 316 L stainless steel (SS) for one half of the cylinder and 304 SS for the other half. In the creep-fatigue test, the hold time under a tensile load which produces the primary nominal stress of 45 MPa was one hour at $600^{\circ}C$ and creep-fatigue loads of 600 cycles were applied. The evaluation results for the creep-fatigue crack propagation were compared with those of the observed images from the structural test. The assessment results for the creep-fatigue crack behavior according to the French Al6 procedure showed that the Al6 is overly conservative for the creep-fatigue crack propagation in the present case with a short hold time of one hour.

Ti-6A1-4V 합금의 피로거동에 미치는 온도, 주파수 및 미세조직의 영향 (The Effect of Temperature, Frequency and Microstructure on Fatigue Crack Propagation in Ti-6A1-4V Alloy)

  • 김현철;김승한;임병수;김두현;이용태
    • 한국자동차공학회논문집
    • /
    • 제4권1호
    • /
    • pp.198-207
    • /
    • 1996
  • The effect of temperature, frequency and microstructure on fatigue crack propagation property of Ti-6A1-4V alloy has been investigated. The temperatures employed were room temperature, 20$0^{\circ}C$ and 40$0^{\circ}C$. The frequencies were 20Hz and 8 Hz. The microstructures tested were equiaxed and bimodal microstructures. Mechanical properties and fatigue crack growth rates were measured in different test conditions. From the experimental results, following conclusions were obtained. Bimodal microstructure showed superior fatigue crack growth resistance to equiaxed microstructure. Under all test conditions, fatigue crack growth rate increased with test temperature. Wine the frequency decreasing from 20Hz to 8Hz, fatigue crack growth rate increased.

  • PDF

표면균열을 갖는 원형봉재 시편을 이용한 고온 피로균열성장 연구 (A Study on Elevated Temperature Fatigue Crack Growth Using Round Bar Specimen with a Surface Crack)

  • 소태원;윤기봉
    • 대한기계학회논문집A
    • /
    • 제20권11호
    • /
    • pp.3415-3423
    • /
    • 1996
  • The compact tension specimen geometry has been widely used for measuring fatigue crack growth rates at elevated temperature when the fatigue load is under tension/tension condition. However, most of the elevated temperature components which have significant crack growth life experience fatigue load under tension/compression conditions. Thus test techniques are required since the compact tension specimen cannot be used for tension/compression loading. In this paper, a simplified test procedure for measureing fatigue crack growth rates is proposed, which employs a round bar specimen with a small surface crack. Fatigue crack growth rates under tension/ tension loading conditions at elevated temperature were measured according to the proposed procedure and compared with those previously measured by C/(T) specimens. Since both the measured crack growth rates were comparable, the fatigue crack growth rates under tension/ compression load can be reliably measured by the proposed procedure. For monitoring crack depth. DC electric potential method is employed and an optimal probe location and current input conditions were proposed.

S35C강의 피로균열 발생 및 진전에 관한 연구 (The Research of Fatigue-Crack Initiation and Propagation for S35C Steel)

  • 진영준
    • 한국안전학회지
    • /
    • 제16권1호
    • /
    • pp.31-36
    • /
    • 2001
  • Surface crack growth characteristics and influence of the stress amplitude in rotary bending fatigue test were evaluated for annealed S35C steel, and than fractal dimensions of fatigue crack paths estimated using the box counting method. The following results that will be helpful to understand the fatigue crack growth mechanism were obtained. (1) Crack growth rate ds/dN and db/dN (s : half crack length at the surface crack, b : crack depth) depended on stress amplitude (${\Delta}{\sigma}/2$), stress intensity factor range (${\Delta}K_A, {\Delta}K_C$) and crack length. (2) At the effect area of 0.3 mm hole notch (s<0.5 mm) crack growth rate did not depend on these factors. (3) The fractal dimensions (D) increased with stress amplitude (${\Delta}{\sigma}/2$) but decreased with cyclic number.

  • PDF

콘크리트의 피로균열 성장거동에 관한 연구 (A Study for the Fatigue Crack Growth Behavior of Concrete)

  • 김진근;김윤용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.101-107
    • /
    • 1996
  • In this study, the wedge splitting test (WST) specimens with various strength levels were tested to investigate the fatigue crack growth behavior of concrete. Selected test variables were concrete compressive strength with 2 levels (28 MPa, 60 MPa, 100 MPa) and maximum fatigue loading with 2 levels (75%, 85%). Fatigue testing was preceded by fracture energy test and the crack growth was measured by means of the compliance calibration method, 60 WST specimens were cast for the fatigue test, and 6 companion cylinders ($\phi$100${\times}$ 200 mm) for each batch. In fatigue test, the frequency of loading cycle was 1 Hz, and the minimum fatigue loading level was 5~10 % of ultimate monotonic loading. On the basis of the experimental results, a fracture mechanics-based empirical relationships for fatigue crack growth rate (da/dN-$\Delta$KI relationships) were presented. In addition, the effect of initial notch depth on the fracture energy and the validity of compliance calibration technique for the WST were shown.

  • PDF

기계적 체결부 균열의 피로균열성장에 관한 연구 (A Study on the Fatigue Crack Growth of Cracks in Mechanical Joints)

  • 허성필;양원호;정기현
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.187-194
    • /
    • 2002
  • It has been reported that cracks in mechanical joints is generally under mixed-mode and there is critical inclined angle at which mode I stress intensity factor becomes maximum. The crack propagates in arbitrary direction and thus the prediction of crack growth path is needed to provide against crack propagation or examine safety. In order to evaluate the fatigue life of cracks in mechanical joints, horizontal crack normal to the applied load and located on minimum cross section is major concern but critical inclined crack must also be considered. In this paper mixed-mode fatigue crack growth test is performed far horizontal crack and critical inclined crack in mechanical joints. Fatigue crack growth path is predicted by maximum tangential stress criterion using stress intensity factor obtained from weight function method, and fatigue crack growth rates of horizontal and inclined crack are compared.