• 제목/요약/키워드: fatigue characteristic equation

검색결과 13건 처리시간 0.027초

고주파 표면열처리된 Cr-Mo강재의 피로특성과 수명예측 (Fatigue Characteristic and Life prediction of Induction Surface Hardened Cr-Mo Steel)

  • 송삼흥;최병호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.676-679
    • /
    • 1995
  • Practically, induction surface hardening is used widely to enhance the local strength of structure. In this study, Fatigue limit and its S-T characteristic for raw and induction hardened specimen of SCM440 is studied experimentally. The life prediction was considered by Juvinall's equation and its predicted result is compared with experiment.

  • PDF

국산 PS 강봉의 고응력범위에서의 직접 인장피로 특성 (A Study on the Characteristics of Direct Tensile Fatigue of the Domestic PS Bar at High Stress Range)

  • 유성원;서정인
    • 한국강구조학회 논문집
    • /
    • 제15권2호
    • /
    • pp.137-145
    • /
    • 2003
  • 본 연구에서는 국산 PS 강봉의 직경, 반복최소응력 및 반복최대응력 등을 실험변수로 하여 직접 인장 피로실험을 수행하였다. 정적 인장실험 결과, 국산 PS 강봉의 응력 - 변형률 곡선과 극한강도 등을 얻었다. 또한, 피로실험에서의 특징적인 실험결과는 PS 강봉의 직경은 피로 수명에 중요한 인자가 아니며, 반복 최소응력의 크기는 국산 PS 강봉의 피로수명에 매우 큰 영향을 미치는 것으로 나타났다. 이러한 피로실험결과를 통계 분석하여 PS 강봉의 응력 범위 및 반복 최소응력 등을 변수로 하는 피로강도 예측식을 제안하였다. 피로실험 중, 시편중앙에 설치한 Extensometer를 이용하여, 변형률의 변화를 측정하였으며, 측정된 변형률 변화현상에서 탄성계수의 변화현상을 구하였다. 변형률 증가현상은 3단계의 형태 즉, 초기에 급격한 증가 후 서서히 증가하며 파괴 직전에 급격하게 증가하는 형태로 나타났다. 탄성계수의 변화현상은 변형률 변화현상과 유사하게 감소하는 것으로 나타났으며 응력수준은 탄성계수 변화에 큰 영향을 주지 않는 것으로 나타났다.

고주파 표면경화에 의한 피로강도 특성과 예측에 관한 연구

  • 송삼홍;최병호
    • 한국정밀공학회지
    • /
    • 제18권9호
    • /
    • pp.122-130
    • /
    • 2001
  • Induction surface hardening is widely used to enhance local strength and hardness. However, most research is only to have a focus on fatigue life and fatigue behavior is not so much studied. So, in this study, Cr-Mo steel alloy(SCM440) was used to show the effect of residual stress and micro hole on the fatigue strength fur base metal and induction surface hardened specimen. In addition, the fatigue characteristic between surface hardened and fully hardened steel is somewhat different. It is caused by hardness distribution, residual stress and inclusions etc.. The modification of prediction equation of fatigue strength is proposed and predicted results show very good accuracy. A $textsc{k}$, which is calculated 1.46, is introduced to consider the effect of stationary crack with defect. A new method of modifying residual stress is proposed to examine the mean stress effect under fatigue loading.

  • PDF

STS 304 압연강의 저주기 피로특성에 관한 연구 (A Characteristic Study of Low Cycle Fatigue for Rolled STS 304 Steel)

  • 김치환;박영민;배문기;김혜성;김태규
    • 열처리공학회지
    • /
    • 제31권1호
    • /
    • pp.18-23
    • /
    • 2018
  • In this study, low cyclic fatigue test was carried out at room temperature condition for rolled STS304 steel. The results of this study show that rolled STS304 steel has excellent static tensile strength and fatigue characteristics. The relationship between plastic strain range and fatigue life was examined using the triangular wave in order to predict the low cycle fatigue life of rolled STS304 steel by Coffin-Manson equation. Cyclic behavior of rolled STS304 steel was characterized by cyclic hardening with increasing number of cycle through the Hysteresis loop analysis and cyclic response of maximum stress versus number of cycles. It is found that the plastic deformation energy consumed per cycle is reduced by calculating the area of the hysteresis loop.

틸트 로터 무인항공기의 플랩퍼론 연결부에 대한 피로수명 평가 (Fatigue Life Estimation for Flaperon Joint of Tilt-Rotor UAV)

  • 김명준;박영철;이정진;박정선
    • 항공우주시스템공학회지
    • /
    • 제3권2호
    • /
    • pp.12-19
    • /
    • 2009
  • The research for the fatigue analysis is regarded greatly as important in aerospace field. Moreover, a study on the fatigue characteristic is very actively progressing. In this study, the fatigue life estimation was performed for Flaperon Joint which has FCL(fatigue critical location) of tilt-rotor UAV. The Flaperon Joint should be taken the various loads by several missions profiles of UAV. The fatigue load spectrum of Flaperon Joint is generated by the standard mission segment for the tilt-rotor UAV, and this spectrum is used for the fatigue test and analysis. The in-house fatigue analysis program is applied to calculate the fatigue life based on Stress-Life(S-N) method. The S-N curve is generated from the S-N data of Mil-Handbook by second order polynomial regression method. Moreover, the coefficient of determination is used to ensure how accuracy it has. In addition, the Goodman equation is used to consider the mean stress effect for evaluating more accurate fatigue life. Finally, the result of fatigue analysis is verified by comparing with the fatigue test result for the Flaperon Joint.

  • PDF

Numerical Life Prediction Method for Fatigue Failure of Rubber-Like Material Under Repeated Loading Condition

  • Kim Ho;Kim Heon-Young
    • Journal of Mechanical Science and Technology
    • /
    • 제20권4호
    • /
    • pp.473-481
    • /
    • 2006
  • Predicting fatigue life by numerical methods was almost impossible in the field of rubber materials. One of the reasons is that there is not obvious fracture criteria caused by nonstandardization of material and excessively various way of mixing process. But, tearing energy as fracture factor can be applied to a rubber-like material regardless of different types of fillers, relative to other fracture factors and the crack growth process of rubber could be considered as the whole fatigue failure process by the existence of potential defects in industrial rubber components. This characteristic of fatigue failure could make it possible to predict the fatigue life of rubber components in theoretical way. FESEM photographs of the surface of industrial rubber components were analyzed for verifying the existence and distribution of potential defects. For the prediction of fatigue life, theoretical way of evaluating tearing energy for the general shape of test-piece was proposed. Also, algebraic expression for the prediction of fatigue life was derived from the rough cut growth rate equation and verified by comparing with experimental fatigue lives of dumbbell fatigue specimen in various loading condition.

용접잔류응력을 고려한 상수도 강관의 피로특성 평가 (Fatigue Characteristic Evaluation in Water Pipe Welds Considering of Welding Residual Stress)

  • 최정훈;구재민;석창성;송원근
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.7-10
    • /
    • 2007
  • In case of large steel water pipe, it have been observed that its fracture mostly occurs due to the complicated outside fatigue load on the pipe in the underground. It is also well known that its damage and leakage happen mainly in a weld zone. In this study we evaluated the fatigue characteristics based on size effect and residual stress by comparing the test results on the standard specimen collected from real pipe with those on full scale pipe.

  • PDF

강섬유 보강 철근콘크리트 연속보의 신뢰성 해석 (Reliability Analysis of Steel Fiber Reinforced Concrete Continuous Beams)

  • 유한신;장화섭;곽계환
    • 한국전산구조공학회논문집
    • /
    • 제17권4호
    • /
    • pp.443-449
    • /
    • 2004
  • 최근 콘크리트 균열선단에서 균열의 발생을 억제하거나 균열 발생시 균열폭을 제어하고 일정부분 하중저항 능력을 향상시킬 목적으로 다양한 형태의 강섬유(Steel Fiber)를 혼입하는 방법이 개발되어 사용되고 있다. 강섬유 보강 철근콘크리트보(SFRC; Steel Fiber Reinforced Concrete)의 복잡한 파괴역학적 성질에 의한 불확실성 통이 내재되어 있다. 본 연구에서는 SFRC보의 불확식성을 고려하는 신뢰성 해석을 수행하였다. 이를 위해 강도 한계상태모형을 제시하였고, 한계상태함수에 포함된 각종 확률변수들에 대한 통계적 특정값을 국내외 관련 문헌을 근거하여 수집, 제시하였다. 향후 추가적인 관련정보가 수집되면 보다 개선된 통계적 특성값을 제공 할 수 있도록 Blayseian Updating 기법을 사용하여 실험결과로부터 불확실성을 개선하는 과정을 제시하였다. 뿐만 아니라 피로신뢰성의 해석을 위해 피로파괴확률식을 제안하고 필요한 통계적 특성 값을 제시하였다.

쇼트피닝 가공된 해양구조용강의 피로파괴에 미치는 응력비의 영향 (The Effect of Fatigue Fracture in shot peening Marine structural steel at stress ratio)

  • 박경동;한건모;진영범
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2003년도 추계학술대회 논문집
    • /
    • pp.138-144
    • /
    • 2003
  • Rencentely, the request for the light weight is more incresed in the area of industrial environment and machinery and consistent effort is needed to accomplish high strength of material for the direction of light weight. we got the following characteristic from crack growth test carried out in the range of stress ration of 0.1, 0.3 and 0.6 by means of opening mode displacement. At the content stress ratio, the threshold stress intensity factor crack range ${\Delta}K_{th}$in the early stage of fatigue crack growth (Region I) and dtress intensity factor range ${\Delta}K$ in the stable of fatigue crack growth (Region II) with an increase in ${\Delta}K$. Fatigue life shows more improvement in the Shot-peened material than in the Un-peening material. And compressive residual stress of surface on the Shot peening processed operate resistance force of fatigue. So we can obtain fallowings. (1) The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is depend on Paris equation. (2) Although the maxium compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maxium compressive residual stress is formed in surface. (3) The threshold stress intensity factor range is increased with increasing compressive residual stress.

  • PDF

Tethers tension force effect in the response of a squared tension leg platform subjected to ocean waves

  • El-gamal, Amr R.;Essa, Ashraf;Ismail, Ayman
    • Ocean Systems Engineering
    • /
    • 제4권4호
    • /
    • pp.327-342
    • /
    • 2014
  • The tension leg platform (TLP) is one of the compliant structures which are generally used for deep water oil exploration. With respect to the horizontal degrees of freedom, it behaves like a floating structure moored by vertical tethers which are pretension due to the excess buoyancy of the platform, whereas with respect to the vertical degrees of freedom, it is stiff and resembles a fixed structure and is not allowed to float freely. In the current study, a numerical study for square TLP using modified Morison equation was carried out in the time domain with water particle kinematics using Airy's linear wave theory to investigate the effect of changing the tether tension force on the stiffness matrix of TLP's, the dynamic behavior of TLP's; and on the fatigue stresses in the cables. The effect was investigated for different parameters of the hydrodynamic forces such as wave periods, and wave heights. The numerical study takes into consideration the effect of coupling between various degrees of freedom. The stiffness of the TLP was derived from a combination of hydrostatic restoring forces and restoring forces due to cables. Nonlinear equation was solved using Newmark's beta integration method. Only uni-directional waves in the surge direction was considered in the analysis. It was found that for short wave periods (i.e., 10 sec.), the surge response consisted of small amplitude oscillations about a displaced position that is significantly dependent on tether tension force, wave height; whereas for longer wave periods, the surge response showed high amplitude oscillations that is significantly dependent on wave height, and that special attention should be given to tethers fatigue because of their high tensile static and dynamic stress.