• Title/Summary/Keyword: fatigue capacity

Search Result 243, Processing Time 0.027 seconds

Study on uplift performance of stud connector in steel-concrete composite structures

  • Ju, Xiaochen;Zeng, Zhibin
    • Steel and Composite Structures
    • /
    • v.18 no.5
    • /
    • pp.1279-1290
    • /
    • 2015
  • The main role of studs, which act as connectors of the steel-concrete composite structures, is to ensure that the steel and the concrete work together as a whole. The studs in steel-concrete composite structures bear the shearing force in the majority of cases, but in certain locations, such as the mid-span of a simply supported composite beam, the studs bear axial uplift force. The previous studies mainly focused on the shearing performance of the stud by some experimental and theoretical effort. However, rare studies involved the uplift performance of studs. In this paper, the single stud uplift test on 10 composite specimens was performed. Meanwhile, based on the test, numerical analysis was introduced to simulate the concrete damage process due to the stud uplifted from concrete. The static ultimate bearing capacity, under which the stud connector was pulled out from the damaged reinforced concrete, is much larger than the cyclic ultimate bearing capacity, under which the weld joint between stud and steel plate fractured. According to the fatigue test results of 7 specimens, the fatigue S-N curve of the construction detail after minus 2 times standard deviation is $logN=24.011-9.171\;log{\Delta}{\sigma}$, the fatigue strength corresponding to $2{\times}10^6$ cycles is 85.33 MPa.

Effects of the buried lamellar tears on the mechanical strength in the welded T joints (T형상용접 이음에서 매몰된 라멜라균열이 용접부의 기계적 강도에 미치는 영향)

  • 고진현
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.44-53
    • /
    • 1988
  • The mechanical strengths of buried lamellar tears located near the weld toe in the welded tee joints were evaluated in terms of the loss of load carrying capacity as a function of tear area. In static loading, the load carrying capacity was significantly reduced when tear intercepted over 10% of the cross-sectional area of the welded joints. However, the welded joints containing buried tears still failed at stresses over the yield strength of the base metal in the through-thickness direction in spite of the presence of tears up to 20-25% of the area. Fatigue strength of welded joints containing tears markedly reduced with increasing tear areas. Lehigh lamellar tearing test used in this study to produce speicmens was described in detail. The load carrying cpapacity in static loading was influenced by the reduction of supporting area whereas that in fatigue loading was influenced by the stress-concentration effects of lamellar tears and the reduction of supporting area. In bend tests, the pre-existing lamellar tears always grew up toward the weld toe. However, in fatigue loading, cracks grew up and down simultaneously form both the weld toe and the top of lamellar tears because of stress concentration. In fatigue loading, delaminations and decohesion of inclusion/matrix interface generated in multipass welds provided crack propagation paths and enhanced crack propagation because the tips of delaminations and deconhesios acted as stress raisers.

  • PDF

Fatigue Capacity Evaluation of Hinge Type Connection System for a Hybrid Truss Bridge (복합 트러스교 힌지형 격점 구조의 피로 성능 평가)

  • Jung, Kwang-Hoe;Yi, Jong-Won;Lee, Sang-Hyu;Kim, Jay Jang-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.303-310
    • /
    • 2011
  • To replace a steel box bridge for constructions of medium span bridges in Korea, the Hybrid Truss Bridge (HTB) is being considered as an alternative bridge type. The core technology of HTB is the connection joint that links the concrete slabs and steel truss pipes. Various construction companies in Japan have developed unique connection systems and applied to the real bridge constructions after verifying their performances through the experimental evaluation. In this study, the fatigue test of a hybrid truss girder has been performed in order to verify the newly proposed hinge type connection joint`s static and fatigue capacities. Through this fatigue test results, it is founded that the structural detail to improve the fatigue capacity should be developed. The hinge connection system with circular ribs has been proposed by means of structural finite element analyses. And then the fatigue test for this connection joint has been performed and it is proved that this connection joint has enough fatigue capacity. Finally, it is expected that the hinge connection system with circular ribs developed by in this study can be easily applied to the real bridge.

Evaluation of Performance of the Railroad Roadbed Material by Model Fatigue lest (실내 모형반복실험에 의한 철도노반재료의 성능 평가)

  • 황선근;이성혁;이시한;최찬용
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.191-198
    • /
    • 2000
  • Dynamic fatigue test is carried out using soil model box for the evaluation of performance of three different roadbed materials. Bearing capacity, settlement and mud pumping phenomenon of each roadbed materials as well as penetration of model ballast into the roadbeds are investigated. It was found that settlement of slag and crushed stone roadbed is smaller than the soil roadbed during dynamic fatigue test with same initial conditions.

  • PDF

Fatigue Test of Domestic CFRP Tendon and Anchorages (CFRP 긴장재 및 정착구의 피로시험)

  • Jung, Woo-Tai;Park, Young-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.421-422
    • /
    • 2009
  • This study investigated the fatigue test of domestic CFRP Tendon and anchorages. Test results revealed that fatigue capacity of anchorages with swage-type and bond-type satisfied the specifications. In domestic CFRP Tendon, fatigue strength of 1 million and 2 million cycle showed 992, 871MPa, respectively.

  • PDF

Anti-fatigue Effect of Kyung-Ok-Ko (경옥고의 항피로 효능)

  • Kim, Yong An;Jin, Sun Woo;Kim, Soul Mi;Lee, Gi Ho;Kim, Se Jong;Lee, Wang Lok;Na, MinKyun;Jeong, Hye Gwang
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.3
    • /
    • pp.258-263
    • /
    • 2016
  • In this study, we tested anti-fatigue effect of Kyung-Ok-Ko (KOK). We examined the exercise performance effects of KOK (600 mg/kg) at 2nd, 3rd and 4th week. The exercise performance of KOK treated group was significantly improved than that of vehicle control (VC) group on grip strength (2nd week), exhausted time of treadmill (3rd week) and exhausted time of weight loaded swimming (4th week). We also investigated the effects of KOK on the change of fatigue parameters in blood, skeletal muscle and liver after swimming exercise. KOK significantly reduced lactate level and enhanced glucose level in blood. Equally KOK significantly increased glycogen in skeletal muscle. However, the glycogen level of KOK in the liver was not significantly increased compared to VC group. These results show that supplementation of KOK may improve the anti-fatigue activity and exercise capacity.

Experimental study on fatigue behavior of innovative hollow composite bridge slabs

  • Yang Chen;Zhaowei Jiang;Qing Xu;Chong Ren
    • Steel and Composite Structures
    • /
    • v.46 no.6
    • /
    • pp.745-757
    • /
    • 2023
  • In order to study the fatigue performance of the flat steel plate-lightweight aggregate concrete hollow composite bridge slab subjected to fatigue load, both static test on two specimens and fatigue test on six specimens were conducted. The effects of the arrangement of the steel pipes, the amplitude of the fatigue load and the upper limit as well as lower limit of fatigue load on failure performance were investigated. Besides, for specimens in fatigue test, strains of the concrete, residual deflection, bending stiffness, residual bearing capacity and dynamic response were analyzed. Test results showed that the specimens failed in the fracture of the bottom flat steel plate regardless of the arrangement of the steel pipes. Moreover, the fatigue loading cycles of composite slab were mainly controlled by the amplitude of the fatigue load, but the influences of upper limit and lower limit of fatigue load on fatigue life was slight. The fatigue life of the composite bridge slabs can be determined by the fatigue strength of bottom flat steel plate, which can be calculated by the method of allowable stress amplitude in steel structure design code.

Fatigue characteristics of the IT girder for railroad (철도교용 IT거더의 피로특성)

  • Choi, Sang-hyun;Lee, Chang-soo
    • Journal of the Society of Disaster Information
    • /
    • v.6 no.2
    • /
    • pp.119-130
    • /
    • 2010
  • In designing a railroad bridge, the fatigue is one of the main factors to be considered for ensuring safe operation. Especially, for a new type of a structural member, which has not been adopted to railroad bridges, the fatigue performance should be checked. In this paper, the fatigue characteristics of an IT girder are examined. The IT girder is a new type of a prestressed concrete girder which has two prestressed H-beams in the top of the girder to give the girder additional sectional capacity. To obtain the fatigue performance, a 10m IT girder specimen is designed, and a repeated load test is performed by applying the load cyclically two million times. The magnitude of the repeated load is determined considering the stress level under the service condition. During the test, static load tests are performed to identify the stiffness degradation. The fatigue performance of the girder is checked according to the Japanese and the CEB-FIB design codes. The fatigue test result shows that the IT girder satisfies both design codes.

Fatigue characteristics of the IT girder for railroad (철도교용 IT거더의 피로특성)

  • Choi, Sang-hyun;Lee, Chang-soo
    • Journal of the Society of Disaster Information
    • /
    • v.6 no.1
    • /
    • pp.140-152
    • /
    • 2010
  • In designing a railroad bridge, the fatigue is one of the main factors to be considered for ensuring safe operation. Especially, for a new type of a structural member, which has not been adopted to railroad bridges, the fatigue performance should be checked. In this paper, the fatigue characteristics of an IT girder are examined. The IT girder is a new type of a prestressed concrete girder which has two prestressed H-beams in the top of the girder to give the girder additional sectional capacity. To obtain the fatigue performance, a 10m IT girder specimen is designed, and a repeated load test is performed by applying the load cyclically two million times. The magnitude of the repeated load is determined considering the stress level under the service condition. During the test, static load tests are performed to identify the stiffness degradation. The fatigue performance of the girder is checked according to the Japanese and the CEB-FIB design codes. The fatigue test result shows that the IT girder satisfies both design codes.

Effect of Kyungohkgo on Aerobic Capacity and Anti-fatigue in High School Soccer Players (경옥고 섭취가 고등학교 축구선수의 운동수행능력 향상 및 피로 회복에 미치는 영향)

  • Kim, Dong-Gun;Park, Won-Hyung;Cha, Yun-Yeop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.5
    • /
    • pp.934-944
    • /
    • 2011
  • This study was designed to investigate the effects of Kyungohkgo to improve aerobic capacity and eliminate exercise-induced fatigue in high school soccer players. Twenty four subjects were participated and randomly assigned into two groups [KG, Kyungohkgo group (n=12); PG, Placebo control group (n=12)]. Two groups were completed treadmill exercise protocol using graded exercise test at before and after experimental treatment of 4 weeks. The $VO_2$max and endurance time were measured by gas analysis and heart rate (HR) was measured by polar system at pre, post 0, post 5, post 15, post 30 and post 60 minutes. Blood samples were collected to analyze blood components. 1. The $VO_2$max was significant increased in the group of after intake Kyungohkgo compared to the group of after intake placebo (p<.05). 2. The HR was significant decreased in the group of after intake Kyungohkgo compared to the group of after intake placebo during recovery time at post 5 mins(p<.05), 30 mins(p<.01), 60 mins(p<.01). 3. Weight, body mass index, percent body fat, anaerobic threshold, endurance time, blood lactate concentrate, lactate dyhydrogenase, creatine kinase, serum glutamic oxaloacetic transaminase, serum glutamic pyruvic transaminase, other energy sources(total-cholesterol, triglyceride, high density lipoprotein-cholesterol, low density lipoprotein-cholesterol, creatinine) and electrolyte (Na, K, Cl) were shown no significant differences between groups. These results suggested that Kyungohkgo can be used as ergogenic aids to improve aerobic capacity and eliminate exercise-induced fatigue.