• Title/Summary/Keyword: faster R-CNN

Search Result 90, Processing Time 0.024 seconds

The Accident Risk Detection System in Dashcam Video using Object Detection Algorithm (물체 탐지 알고리즘을 활용한 블랙박스 영상 내 사고 위험 감지 시스템)

  • Hong, Jin-seok;Han, Myeong-woo;Kim, Jeong-seon;Kim, Kyung-sup
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.364-368
    • /
    • 2018
  • In this paper, we use Faster R-CNN that is one of object detection algorithm and OpenCV that purposes computer vision, to implement the system that can detect danger when a vehicle attempts to change lanes into its own lane in videos of highway, national road, general road and etc. Also, the performance of implemented system is evaluated to prove that the performance is not bad.

  • PDF

A Study on Trademark Vienna Classification Automation Using Faster R-CNN and DenseNet (Faster R-CNN과 DenseNet을 이용한 도형 상표 비엔나 분류 자동화 연구)

  • Lee, Jin-woo;Kim, Hong-ki;Lee, Ha-young;Ko, Bong-soo;Lee, Bong-gun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.848-851
    • /
    • 2019
  • 이미지 형식으로 등록되는 상표의 특성상 상표의 검색에는 어려움이 따른다. 특허청은 도형 상표의 검색을 용이하게 하기 위해 상표가 포함하고 있는 구성요소에 도형분류코드를 부여한다. 하지만 도형 상표에 포함된 이미지를 확인하고 분류코드를 부여하는 과정은 사람이 직접 수행해야 한다는 어려움이 따른다. 이에 본 논문에서는 딥러닝을 이용하여 자동으로 도형 상표 내 객체를 인식하고 분류코드를 부여하는 방안을 제안한다. DenseNet을 이용하여 중분류를 먼저 예측한 후 각 중분류에 해당하는 Faster R-CNN 모델을 이용하여 세분류 예측을 수행하였다. 성능평가를 통해 비엔나분류 중분류별 평균 74.49%의 예측 정확도를 확인하였다.

Feature Extraction of Non-proliferative Diabetic Retinopathy Using Faster R-CNN and Automatic Severity Classification System Using Random Forest Method

  • Jung, Younghoon;Kim, Daewon
    • Journal of Information Processing Systems
    • /
    • v.18 no.5
    • /
    • pp.599-613
    • /
    • 2022
  • Non-proliferative diabetic retinopathy is a representative complication of diabetic patients and is known to be a major cause of impaired vision and blindness. There has been ongoing research on automatic detection of diabetic retinopathy, however, there is also a growing need for research on an automatic severity classification system. This study proposes an automatic detection system for pathological symptoms of diabetic retinopathy such as microaneurysms, retinal hemorrhage, and hard exudate by applying the Faster R-CNN technique. An automatic severity classification system was devised by training and testing a Random Forest classifier based on the data obtained through preprocessing of detected features. An experiment of classifying 228 test fundus images with the proposed classification system showed 97.8% accuracy.

Detecting Vehicles That Are Illegally Driving on Road Shoulders Using Faster R-CNN (Faster R-CNN을 이용한 갓길 차로 위반 차량 검출)

  • Go, MyungJin;Park, Minju;Yeo, Jiho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.105-122
    • /
    • 2022
  • According to the statistics about the fatal crashes that have occurred on the expressways for the last 5 years, those who died on the shoulders of the road has been as 3 times high as the others who died on the expressways. It suggests that the crashes on the shoulders of the road should be fatal, and that it would be important to prevent the traffic crashes by cracking down on the vehicles intruding the shoulders of the road. Therefore, this study proposed a method to detect a vehicle that violates the shoulder lane by using the Faster R-CNN. The vehicle was detected based on the Faster R-CNN, and an additional reading module was configured to determine whether there was a shoulder violation. For experiments and evaluations, GTAV, a simulation game that can reproduce situations similar to the real world, was used. 1,800 images of training data and 800 evaluation data were processed and generated, and the performance according to the change of the threshold value was measured in ZFNet and VGG16. As a result, the detection rate of ZFNet was 99.2% based on Threshold 0.8 and VGG16 93.9% based on Threshold 0.7, and the average detection speed for each model was 0.0468 seconds for ZFNet and 0.16 seconds for VGG16, so the detection rate of ZFNet was about 7% higher. The speed was also confirmed to be about 3.4 times faster. These results show that even in a relatively uncomplicated network, it is possible to detect a vehicle that violates the shoulder lane at a high speed without pre-processing the input image. It suggests that this algorithm can be used to detect violations of designated lanes if sufficient training datasets based on actual video data are obtained.

Automatic detection of periodontal compromised teeth in digital panoramic radiographs using faster regional convolutional neural networks

  • Thanathornwong, Bhornsawan;Suebnukarn, Siriwan
    • Imaging Science in Dentistry
    • /
    • v.50 no.2
    • /
    • pp.169-174
    • /
    • 2020
  • Purpose: Periodontal disease causes tooth loss and is associated with cardiovascular diseases, diabetes, and rheumatoid arthritis. The present study proposes using a deep learning-based object detection method to identify periodontally compromised teeth on digital panoramic radiographs. A faster regional convolutional neural network (faster R-CNN) which is a state-of-the-art deep detection network, was adapted from the natural image domain using a small annotated clinical data- set. Materials and Methods: In total, 100 digital panoramic radiographs of periodontally compromised patients were retrospectively collected from our hospital's information system and augmented. The periodontally compromised teeth found in each image were annotated by experts in periodontology to obtain the ground truth. The Keras library, which is written in Python, was used to train and test the model on a single NVidia 1080Ti GPU. The faster R-CNN model used a pretrained ResNet architecture. Results: The average precision rate of 0.81 demonstrated that there was a significant region of overlap between the predicted regions and the ground truth. The average recall rate of 0.80 showed that the periodontally compromised teeth regions generated by the detection method excluded healthiest teeth areas. In addition, the model achieved a sensitivity of 0.84, a specificity of 0.88 and an F-measure of 0.81. Conclusion: The faster R-CNN trained on a limited amount of labeled imaging data performed satisfactorily in detecting periodontally compromised teeth. The application of a faster R-CNN to assist in the detection of periodontally compromised teeth may reduce diagnostic effort by saving assessment time and allowing automated screening documentation.

Comparison and Verification of Deep Learning Models for Automatic Recognition of Pills (알약 자동 인식을 위한 딥러닝 모델간 비교 및 검증)

  • Yi, GyeongYun;Kim, YoungJae;Kim, SeongTae;Kim, HyoEun;Kim, KwangGi
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.3
    • /
    • pp.349-356
    • /
    • 2019
  • When a prescription change occurs in the hospital depending on a patient's improvement status, pharmacists directly classify manually returned pills which are not taken by a patient. There are hundreds of kinds of pills to classify. Because it is manual, mistakes can occur and which can lead to medical accidents. In this study, we have compared YOLO, Faster R-CNN and RetinaNet to classify and detect pills. The data consisted of 10 classes and used 100 images per class. To evaluate the performance of each model, we used cross-validation. As a result, the YOLO Model had sensitivity of 91.05%, FPs/image of 0.0507. The Faster R-CNN's sensitivity was 99.6% and FPs/image was 0.0089. The RetinaNet showed sensitivity of 98.31% and FPs/image of 0.0119. Faster RCNN showed the best performance among these three models tested. Thus, the most appropriate model for classifying pills among the three models is the Faster R-CNN with the most accurate detection and classification results and a low FP/image.

Deep Learning-Based Defects Detection Method of Expiration Date Printed In Product Package (딥러닝 기반의 제품 포장에 인쇄된 유통기한 결함 검출 방법)

  • Lee, Jong-woon;Jeong, Seung Su;Yu, Yun Seop
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.463-465
    • /
    • 2021
  • Currently, the inspection method printed on food packages and boxes is to sample only a few products and inspect them with human eyes. Such a sampling inspection has the limitation that only a small number of products can be inspected. Therefore, accurate inspection using a camera is required. This paper proposes a deep learning object recognition technology model, which is an artificial intelligence technology, as a method for detecting the defects of expiration date printed on the product packaging. Using the Faster R-CNN (region convolution neural network) model, the color images, converted gray images, and converted binary images of the printed expiration date are trained and then tested, and each detection rates are compared. The detection performance of expiration date printed on the package by the proposed method showed the same detection performance as that of conventional vision-based inspection system.

  • PDF

Classification of Diabetic Retinopathy using Mask R-CNN and Random Forest Method

  • Jung, Younghoon;Kim, Daewon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.12
    • /
    • pp.29-40
    • /
    • 2022
  • In this paper, we studied a system that detects and analyzes the pathological features of diabetic retinopathy using Mask R-CNN and a Random Forest classifier. Those are one of the deep learning techniques and automatically diagnoses diabetic retinopathy. Diabetic retinopathy can be diagnosed through fundus images taken with special equipment. Brightness, color tone, and contrast may vary depending on the device. Research and development of an automatic diagnosis system using artificial intelligence to help ophthalmologists make medical judgments possible. This system detects pathological features such as microvascular perfusion and retinal hemorrhage using the Mask R-CNN technique. It also diagnoses normal and abnormal conditions of the eye by using a Random Forest classifier after pre-processing. In order to improve the detection performance of the Mask R-CNN algorithm, image augmentation was performed and learning procedure was conducted. Dice similarity coefficients and mean accuracy were used as evaluation indicators to measure detection accuracy. The Faster R-CNN method was used as a control group, and the detection performance of the Mask R-CNN method through this study showed an average of 90% accuracy through Dice coefficients. In the case of mean accuracy it showed 91% accuracy. When diabetic retinopathy was diagnosed by learning a Random Forest classifier based on the detected pathological symptoms, the accuracy was 99%.

Real-time Smoke Detection Research with False Positive Reduction using Spatial and Temporal Features based on Faster R-CNN

  • Lee, Sang-Hoon;Lee, Yeung-Hak
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1148-1155
    • /
    • 2020
  • Fire must be extinguished as quickly as possible because they cause a lot of economic loss and take away precious human lives. Especially, the detection of smoke, which tends to be found first in fire, is of great importance. Smoke detection based on image has many difficulties in algorithm research due to the irregular shape of smoke. In this study, we introduce a new real-time smoke detection algorithm that reduces the detection of false positives generated by irregular smoke shape based on faster r-cnn of factory-installed surveillance cameras. First, we compute the global frame similarity and mean squared error (MSE) to detect the movement of smoke from the input surveillance camera. Second, we use deep learning algorithm (Faster r-cnn) to extract deferred candidate regions. Third, the extracted candidate areas for acting are finally determined using space and temporal features as smoke area. In this study, we proposed a new algorithm using the space and temporal features of global and local frames, which are well-proposed object information, to reduce false positives based on deep learning techniques. The experimental results confirmed that the proposed algorithm has excellent performance by reducing false positives of about 99.0% while maintaining smoke detection performance.

Image Label Prediction Algorithm based on Convolution Neural Network with Collaborative Layer (협업 계층을 적용한 합성곱 신경망 기반의 이미지 라벨 예측 알고리즘)

  • Lee, Hyun-ho;Lee, Won-jin
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.6
    • /
    • pp.756-764
    • /
    • 2020
  • A typical algorithm used for image analysis is the Convolutional Neural Network(CNN). R-CNN, Fast R-CNN, Faster R-CNN, etc. have been studied to improve the performance of the CNN, but they essentially require large amounts of data and high algorithmic complexity., making them inappropriate for small and medium-sized services. Therefore, in this paper, the image label prediction algorithm based on CNN with collaborative layer with low complexity, high accuracy, and small amount of data was proposed. The proposed algorithm was designed to replace the part of the neural network that is performed to predict the final label in the existing deep learning algorithm by implementing collaborative filtering as a layer. It is expected that the proposed algorithm can contribute greatly to small and medium-sized content services that is unsuitable to apply the existing deep learning algorithm with high complexity and high server cost.