DOI QR코드

DOI QR Code

A Study on Trademark Vienna Classification Automation Using Faster R-CNN and DenseNet

Faster R-CNN과 DenseNet을 이용한 도형 상표 비엔나 분류 자동화 연구

  • Published : 2019.10.30

Abstract

이미지 형식으로 등록되는 상표의 특성상 상표의 검색에는 어려움이 따른다. 특허청은 도형 상표의 검색을 용이하게 하기 위해 상표가 포함하고 있는 구성요소에 도형분류코드를 부여한다. 하지만 도형 상표에 포함된 이미지를 확인하고 분류코드를 부여하는 과정은 사람이 직접 수행해야 한다는 어려움이 따른다. 이에 본 논문에서는 딥러닝을 이용하여 자동으로 도형 상표 내 객체를 인식하고 분류코드를 부여하는 방안을 제안한다. DenseNet을 이용하여 중분류를 먼저 예측한 후 각 중분류에 해당하는 Faster R-CNN 모델을 이용하여 세분류 예측을 수행하였다. 성능평가를 통해 비엔나분류 중분류별 평균 74.49%의 예측 정확도를 확인하였다.

Keywords