• Title/Summary/Keyword: fastener connection

Search Result 18, Processing Time 0.029 seconds

Estimation of Moment Resisting Property for Pin Connection Using Shear Strength of Small Glulam Specimens (집성재 소시험편의 전단강도에 의한 핀접합부의 모멘트 저항성능 예측)

  • Hwang, Kweonhwan;Park, Joosaeng
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.4
    • /
    • pp.58-65
    • /
    • 2008
  • Most connections for the glulam structural members consisted of connector and fastener. The mechanical behaviour of the connection can be occurred by the dowel bearing resistance and wood shear by the fastener. This study aims at the examination of the shear properties for the small specimen with lamination components and for the full-sized pin connection and the moment resisting property for the double shear full-sized pin connection using structural column and beam members. Small specimens including glue line shows greater density and shear strength by the lamination effect than other specimens. It is needed that estimations of double shear property and moment resistance for the pin connections should be adjusted in some degree. For the better and safe estimation of moment resistance strength for the column-beam pin connection, however, the shear strength of small specimens should be deducted by 10%.

Characteristics of wind loads on roof cladding and fixings

  • Ginger, J.D.
    • Wind and Structures
    • /
    • v.4 no.1
    • /
    • pp.73-84
    • /
    • 2001
  • Analysis of pressures measured on the roof of the full-scale Texas Tech building and a 1/50 scale model of a typical house showed that the pressure fluctuations on cladding fastener and cladding-truss connection tributary areas have similar characteristics. The probability density functions of pressure fluctuations on these areas are negatively skewed from Gaussian, with pressure peak factors less than -5.5. The fluctuating pressure energy is mostly contained at full-scale frequencies of up to about 0.6 Hz. Pressure coefficients, $C_p$ and local pressure factors, $K_l$ given in the Australian wind load standard AS1170.2 are generally satisfactory, except for some small cladding fastener tributary areas near the edges.

A new type notched slab approach for timber-concrete composite construction: Experimental and numerical investigation

  • Yilmaz, Semih;Karahasan, Olguhan Sevket;Altunisik, Ahmet Can;Vural, Nilhan;Demir, Serhat
    • Structural Engineering and Mechanics
    • /
    • v.81 no.6
    • /
    • pp.737-750
    • /
    • 2022
  • Timber-Concrete Composite construction system consists of combining timber beam or deck and concrete with different connectors. Different fastener types are used in Timber-Concrete Composite systems. In this paper, the effects of two types of fasteners on structural behavior are compared. First, the notches were opened on timber beam, and combined with reinforced concrete slab by fasteners. This system is called as Notched Connection System. Then, timber beam and reinforced concrete slab were combined by new type designed fasteners in another model. This system is called as Notched-Slab Approach. Two laboratory models were constructed and bending tests were performed to examine the fasteners' effectiveness. Bending test results have shown that heavy damage to concrete slab occurs in Notched Connection System applications and the system becomes unusable. However, in Notched-Slab Approach applications, the damage concentrated on the fastener in the metal notch created in the slab, and no damage occurred in the concrete slab. In addition, non-destructive experimental measurements were conducted to determine the dynamic characteristics. To validate the experimental results, initial finite element models of both systems were constituted in ANSYS software using orthotropic material properties, and numerical dynamic characteristics were calculated. Finite element models of Timber-Concrete Composite systems are updated to minimize the differences by manual model updating procedure using some uncertain parameters such as material properties and boundary conditions.

Topology Optimization of Connection Component System Using Density Distribution Method (밀도분포법을 이용한 부재의 연결구조 최적화)

  • 한석영;유재원
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.4
    • /
    • pp.50-56
    • /
    • 2003
  • Most engineering products contain more than one component. Failure occurs either at the connection itself or in the component at the point of attachment of the connection in many engineering structures. The allocation and design of connections such as bolts, spot-welds, adhesive etc. usually play an important role in the structure of multi-components. Topology optimization of connection component provides more practical solution in design of multi-component connection system. In this study, a topology optimization based on density distribution approach has been applied to optimal location of fasteners such as T-shape, L-shape and multi-component connection system. From the results, it was verified that the number of iteration was reduced, and the optimal topology was obtained very similarly comparing with ESO method. Therefore, it can be concluded that the density distribution method is very suitable for topology optimization of multi-component structures.

Topology Design of Connection Component System Using Density Distribution Method (밀도분포법을 이용한 부재의 연결구조 최적화)

  • 한석영;유재원;박재용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.15-20
    • /
    • 2003
  • Most engineering products contain more than one component. Failure occurs either at the connection itself or in the component at the point of attachment of the connection in many engineering structures. The allocation and design of connections such as bolts, spot-welds, adhesive etc. usually play an important role in the structure of multi-components. Topology optimization of connection component provides more practical solution in design of multi-component connection system. In this study, a topology optimization based on density distribution approach has been applied to optimal location of fasteners such as T-shape, L-shape and multi-component connection system. From the results, it was verified that the number of iteration was reduced, and the optimal topology was obtained very similarly comparing with ESO method. Therefore, it can be concluded that the density distribution method is very suitable for topology optimization of multi-component structures.

  • PDF

Running safety of high-speed train on deformed railway bridges with interlayer connection failure

  • Gou, Hongye;Liu, Chang;Xie, Rui;Bao, Yi;Zhao, Lixiang;Pu, Qianhui
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.261-274
    • /
    • 2021
  • In a railway bridge, the CRTS II slab ballastless track is subjected to interlayer connection failures, such as void under slab, mortar debonding, and fastener fracture. This study investigates the influences of interlayer connection failure on the safe operation of high-speed trains. First, a train-track-bridge coupled vibration model and a bridge-track deformation model are established to study the running safety of a train passing a deformed bridge with interlayer connection failure. For each type of the interlayer connection failure, the effects of the failure locations and ranges on the track irregularity are studied using the deformation model. Under additional bridge deformation, the effects of interlayer connection failure on the dynamic responses of the train are investigated by using the track irregularity as the excitation to the vibration model. Finally, parametric studies are conducted to determine the thresholds of additional bridge deformations considering interlayer connection failure. Results show that the interlayer connection failure significantly affects the running safety of high-speed train and must be considered in determining the safety thresholds of additional bridge deformation in the asset management of high-speed railway bridges.

Connection Tests for Cold-Formed Steel Wall Panels (냉간성형강 벽체패널의 연결부실험)

  • Lee, Young-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.739-746
    • /
    • 2014
  • The objective of this test series was to determine shear load per unit length which causes a unit slip in the fastener joint. The shear load is one of major factors which reflect partial composite action for cold-formed steel wall stud panels. Test method used were based on the methods presented in the 1962 AISI Specification. According to the comparison with experimental strength, it is seen that the shear loads used in nominal axial strength predictions made acceptable results.

Axial strengthening of RC columns by direct fastening of steel plates

  • Shan, Z.W.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.705-720
    • /
    • 2021
  • Reinforced concrete (RC) columns are the primary type of vertical support used in building structures that sustain vertical loads. However, their strength may be insufficient due to fire, earthquake or volatile environments. The load demand may be increased due to new functional usages of the structure. The deformability of concrete columns can be greatly reduced under high axial load conditions. In response, a novel steel encasement that distinguishes from the traditional steel jacketing that is assembled by welding or bolt is developed. This novel strengthening method features easy installation and quick strengthening because direct fastening is used to connect the four steel plates surrounding the column. This new connection method is usually used to quickly and stably connect two steel components by driving high strength fastener into the steel components. The connections together with the steel plates behave like transverse reinforcement, which can provide passive confinement to the concrete. The confined column along with the steel plates resist the axial load. By this way, the axial load capacity and deformability of the column can be enhanced. Eight columns are tested to examine the reliability and effectiveness of the proposed method. The effects of the vertical spacing between adjacent connections, thickness of the steel plate and number of fasteners in each connection are studied to identify the critical parameters which affect the load bearing performance and deformation behavior. Lastly, a theoretical model is proposed for predicting the axial load capacity of the strengthened RC columns.

Analysis Model for Approximate Evaluation of Stiffness for Semi-Rigid Connection of Wooden Structures (목조 구조물 접합부의 강성에 대한 근사평가를 위한 해석모델)

  • Cho, So-Hoon;Lee, Heon-Woo;Park, Moon-Jae;Kim, Taejin;Kim, Jong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.93-100
    • /
    • 2015
  • Modern wooden structures usually are connected with steel fastener type connectors. And joints using multiple connectors in wooden structures will form semi-rigid connection. If connection in wooden structure would be designed to be pinned joint, the underestimate for loads transmitted through connection, would result in the deficient capacity of resistance in connection. And if joints in wooden structures would be assumed to be fully-rigid joint, amount of fasteners needed at the connection could be excessively increased. It will give a bad effect in the view of beauty, constructability and economy. Estimate for the reasonable stiffness of connection might be essential in design of reasonable connection in wooden structure. This paper will suggest analysis modelling technique that can represent approximate stiffness of connections using a common analysis program for double shear connection in order to give help in performing easily the design of wooden structure. It is verified that the suggested approximate analysis modelling technique could represent the behavior in connection by comparing the analysis results with test results for tensile, bending moment.

Splice Performance Evaluation of Fastening Coupler According to the Slope Length of Internal Fasteners (조임쇠 경사길이에 따른 체결식 커플러의 이음성능 평가)

  • Jung, Hyun-Suk;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.11-19
    • /
    • 2022
  • In this study, in order to improve the splice performance of mechanical couplers, two new mechanical couplers with different connection modes were developed with rebar(SD400). The stress analysis of mechanical couplers with two different connection modes was carried out. Uniaxial tensile tests were carried out with type of steel, connection mode and the slope length of internal fastener as variables to analyze the influence on the maximum tensile strength. Building upon this previous work, the specimens that met the code in uniaxial tensile test were fabricated and static loading test and cyclic loading test were performed on the basis of Korean code(KS D 0249). The results of this research are as follows; (1) The tensile strength of steel and the slope length of internal fasteners have a certain influence on the maximum tensile strength. (2) The connection mode has some influence on the stiffness, slip and stiffness reduction rate of the connecting rebars. The results verify the feasibility of the proposed enhanced mechanical coupler in the field.