• 제목/요약/키워드: fast-track promotion

검색결과 3건 처리시간 0.016초

미래로의 지향: 아시아의 항공산업, 그 현황과 도전 (Targeting the Future : Asian Aerospace, Its Current Status and Challenges)

  • 김준모
    • 기술혁신학회지
    • /
    • 제1권3호
    • /
    • pp.338-350
    • /
    • 1998
  • Asian countries, ranging from China and Japan to Korea and Taiwan, differ in their industrial development stages to support the aerospace industry, and market access conditions. Despite these differences, all these countries target the aerospace industry as one of their future industries. The phenomenon challenges the conventional view that entry into the aerospace sector follows a gradual path from simple hanger repairs to license production, and to international collaboration. This paper reviews current status of the Asian aerospace with a dichotomy of the conventional promotion and Fast-Track promotion strategies. Analysis revealed that multiple entry points, in terms of technological level, exist in the aerospace industry, while the conventional thinking still holds validity. Then the paper presents potential obstacles and challenges these Asian countries would face in the promotion of the industry.

  • PDF

딥러닝 기반의 레일표면손상 평가 (Deep Learning-based Rail Surface Damage Evaluation)

  • 최정열;한재민;김정호
    • 문화기술의 융합
    • /
    • 제10권2호
    • /
    • pp.505-510
    • /
    • 2024
  • 철도 레일은 차륜과 레일의 접촉면인 레일 표면에서 구름 접촉 피로 균열이 상시 발생할 수 있는 조건이기 때문에 균열의 상태를 철저히 점검하고 절손을 방지하기 위한 정밀한 점검 및 진단이 필요하다. 최근 궤도 시설의 성능 평가에 대한 세부 지침에서는 궤도 성능평가를 위한 방법과 절차에 관한 필요사항을 제시하고 있다. 그러나 레일 표면 손상을 진단하고 등급을 산정하는 것은 주로 외관 조사(육안 조사)에 의존하며, 이는 점검자의 주관적인 판단에 따른 정성적인 평가에 의존할 수밖에 없는 실정이다. 따라서 본 연구에서는 Fast R-CNN을 사용하여 레일 표면 결함 검출에 대한 딥러닝 모델 연구를 수행하였다. 레일 표면 결함 이미지의 데이터 세트를 구축한 후, 모델을 테스트하였다. 딥러닝 모델의 성능평가 결과에서 mAP가 94.9%로 나타났다. Fast R-CNN의 균열 검출 효과가 높기 때문에 이 모델을 사용하면 레일표면 결함을 효율적으로 식별할 수 있을 것으로 판단된다.

이미지 분석기법을 이용한 레일표면손상 진단애플리케이션 개발 (Development of Diagnosis Application for Rail Surface Damage using Image Analysis Techniques)

  • 최정열;안대희;김태준
    • 문화기술의 융합
    • /
    • 제10권2호
    • /
    • pp.511-516
    • /
    • 2024
  • 최근 제정된 궤도시설의 성능평가에 관한 세부지침에서 궤도성능평가의 평가절차 및 실시방법 등에 관한 필요사항을 제시하였다. 그러나 외관조사(육안조사)에 의해 레일표면손상의 등급이 결정되며, 점검자의 주관적인 판단으로 정성적인 평가에만 의존할 수밖에 없는 실정이다. 따라서 본 연구에서는 레일표면손상을 이용하여 레일내부결함까지 진단할 수 있는 진단애플리케이션을 개발하고자 하였다. 현장조사에서는 레일표면손상을 조사하고 패턴을 분석하였다. 또한 실내시험에서는 레일내부손상 이미지 데이터를 구축하기 위하여 SEM 시험을 이용하였으며, 균열 길이, 깊이 및 각도를 정량화하였다. 본 연구에서는 현장조사와 실내시험에서 구축한 이미지 데이터를 적용한 딥러닝 모델(Fast R-CNN)을 애플리케이션에 적용하였다, 스마트기기에서 사용이 가능한 딥러닝 모델을 이용한 레일표면손상 진단 애플리케이션(App)을 개발하여 향후 궤도진단 및 성능평가 업무에 활용 가능한 레일표면손상 스마트 진단시스템을 개발하였다.