• Title/Summary/Keyword: fast-algorithm

Search Result 3,702, Processing Time 0.029 seconds

Dynamic Time Constant Based High-Performance Insulation Resistance Calculation Method (동적 시정수 기반 고성능 절연 저항 계산 기법)

  • Son, Gi-Beom;Hong, Jong-Phil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.1058-1063
    • /
    • 2020
  • This paper presents a new insulation resistance calculation technique to prevent electric shock and fire accidents due to the dielectric breakdown in the primary insulation section of the IT ground system. The solar power generation market is growing rapidly due to the recent expansion of renewable energy and energy storage systems, but as the insulation is destroyed and fire accidents frequently occur, a device for monitoring the insulation resistance state is indispensable to the IT grounding method. Compared to the conventional algorithm that use a method of multiplying a time constant to a fixed coefficient, the proposed insulation resistance calculation method has a fast response time and high accuracy over a wide insulation resistance range by applying a different coefficient according to the values of the insulation impedance. The proposed dynamic time constant based insulation resistance calculation technique reduces the response time by up to 39.29 seconds and improves the error rate by 20.11%, compared to the conventional method.

Real Time Hornet Classification System Based on Deep Learning (딥러닝을 이용한 실시간 말벌 분류 시스템)

  • Jeong, Yunju;Lee, Yeung-Hak;Ansari, Israfil;Lee, Cheol-Hee
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1141-1147
    • /
    • 2020
  • The hornet species are so similar in shape that they are difficult for non-experts to classify, and because the size of the objects is small and move fast, it is more difficult to detect and classify the species in real time. In this paper, we developed a system that classifies hornets species in real time based on a deep learning algorithm using a boundary box. In order to minimize the background area included in the bounding box when labeling the training image, we propose a method of selecting only the head and body of the hornet. It also experimentally compares existing boundary box-based object recognition algorithms to find the best algorithms that can detect wasps in real time and classify their species. As a result of the experiment, when the mish function was applied as the activation function of the convolution layer and the hornet images were tested using the YOLOv4 model with the Spatial Attention Module (SAM) applied before the object detection block, the average precision was 97.89% and the average recall was 98.69%.

A Study on the Automated Payment System for Artificial Intelligence-Based Product Recognition in the Age of Contactless Services

  • Kim, Heeyoung;Hong, Hotak;Ryu, Gihwan;Kim, Dongmin
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.100-105
    • /
    • 2021
  • Contactless service is rapidly emerging as a new growth strategy due to consumers who are reluctant to the face-to-face situation in the global pandemic of coronavirus disease 2019 (COVID-19), and various technologies are being developed to support the fast-growing contactless service market. In particular, the restaurant industry is one of the most desperate industrial fields requiring technologies for contactless service, and the representative technical case should be a kiosk, which has the advantage of reducing labor costs for the restaurant owners and provides psychological relaxation and satisfaction to the customer. In this paper, we propose a solution to the restaurant's store operation through the unmanned kiosk using a state-of-the-art artificial intelligence (AI) technology of image recognition. Especially, for the products that do not have barcodes in bakeries, fresh foods (fruits, vegetables, etc.), and autonomous restaurants on highways, which cause increased labor costs and many hassles, our proposed system should be very useful. The proposed system recognizes products without barcodes on the ground of image-based AI algorithm technology and makes automatic payments. To test the proposed system feasibility, we established an AI vision system using a commercial camera and conducted an image recognition test by training object detection AI models using donut images. The proposed system has a self-learning system with mismatched information in operation. The self-learning AI technology allows us to upgrade the recognition performance continuously. We proposed a fully automated payment system with AI vision technology and showed system feasibility by the performance test. The system realizes contactless service for self-checkout in the restaurant business area and improves the cost-saving in managing human resources.

A Heuristic for Service-Parts Lot-Sizing with Disassembly Option (분해옵션 포함 서비스부품 로트사이징 휴리스틱)

  • Jang, Jin-Myeong;Kim, Hwa-Joong;Son, Dong-Hoon;Lee, Dong-Ho
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.24-35
    • /
    • 2021
  • Due to increasing awareness on the treatment of end-of-use/life products, disassembly has been a fast-growing research area of interest for many researchers over recent decades. This paper introduces a novel lot-sizing problem that has not been studied in the literature, which is the service-parts lot-sizing with disassembly option. The disassembly option implies that the demands of service parts can be fulfilled by newly manufactured parts, but also by disassembled parts. The disassembled parts are the ones recovered after the disassembly of end-of-use/life products. The objective of the considered problem is to maximize the total profit, i.e., the revenue of selling the service parts minus the total cost of the fixed setup, production, disassembly, inventory holding, and disposal over a planning horizon. This paper proves that the single-period version of the considered problem is NP-hard and suggests a heuristic by combining a simulated annealing algorithm and a linear-programming relaxation. Computational experiment results show that the heuristic generates near-optimal solutions within reasonable computation time, which implies that the heuristic is a viable optimization tool for the service parts inventory management. In addition, sensitivity analyses indicate that deciding an appropriate price of disassembled parts and an appropriate collection amount of EOLs are very important for sustainable service parts systems.

Analysis of Deep Learning Model for the Development of an Optimized Vehicle Occupancy Detection System (최적화된 차량 탑승인원 감지시스템 개발을 위한 딥러닝 모델 분석)

  • Lee, JiWon;Lee, DongJin;Jang, SungJin;Choi, DongGyu;Jang, JongWook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.146-151
    • /
    • 2021
  • Currently, the demand for vehicles from one family is increasing in many countries at home and abroad, reducing the number of people on the vehicle and increasing the number of vehicles on the road. The multi-passenger lane system, which is available to solve the problem of traffic congestion, is being implemented. The system allows police to monitor fast-moving vehicles with their own eyes to crack down on illegal vehicles, which is less accurate and accompanied by the risk of accidents. To address these problems, applying deep learning object recognition techniques using images from road sites will solve the aforementioned problems. Therefore, in this paper, we compare and analyze the performance of existing deep learning models, select a deep learning model that can identify real-time vehicle occupants through video, and propose a vehicle occupancy detection algorithm that complements the object-ident model's problems.

The User Perception in ASMR Marketing Content through Social Media Text-Mining: ASMR Product Review Content vs ASMR How-to Content (텍스트 마이닝을 활용한 ASMR 콘텐츠 분야에 따른 소비자 인식 및 구전효과 차이점 분석: ASMR 제품리뷰 및 ASMR How-to 콘텐츠 중심으로)

  • Tran, Hung Chuong;Choi, Jae Won
    • The Journal of Information Systems
    • /
    • v.30 no.4
    • /
    • pp.1-20
    • /
    • 2021
  • Purpose Nowadays, Autonomous Sensory Meridian Response (ASMR) is rapidly growing in popularity and increasingly appearing in marketing. Not even in TV commercial advertisement, ASMR also fast growing in one-person media communication, many brands and social media influencers used ASMR for their marketing contents. The purpose of this study is to measure consumers' perceptions about the products in ASMR marketing content and compare the differences in communication effect of ASMR content creator between product review and how-to in the same Macro tier influencer - the YouTuber that has 10,000-100,000 subscribers. Design/methodology/approach The research methods selected ASMRtist that do product review content and how-to content, Text comments data was collected from 200 videos of tech-device review videos and beauty-fashion videos. A total of 52,833 text comments were analyzed by applying the LDA topic modeling algorithm and social network analysis. Findings Through the result, we can know that ASMR is good at taking attention of viewers with ASMR triggers. In the Tech device reviews field, ASMR viewers also focus on the product like product's performance and purchase. However, there are many topics related to reaction of ASMR sound, trigger, relaxation. In the Beauty-fashion field, viewers' topics mainly focus on the reaction of the ASMR trigger, response to ASMRtist and other topics are talking about makeup - fashion, product, purchase. From LDA result, many ASMR viewers comment that they feel more comfortable when watching the marketing content that uses ASMR. This result has shown that ASMR marketing contents have a good performance in terms of user watching experience, so applying ASMR can take more consumer intention. And the result of social network analysis showed that product review ASMRtist have a higher communication effectiveness than how-to ASMRtist in the same tier. As an influencer marketing strategy, this study provides information to establish an efficient advertising strategy by using influencers that create ASMR content.

Deep learning-based target distance and velocity estimation technique for OFDM radars (OFDM 레이다를 위한 딥러닝 기반 표적의 거리 및 속도 추정 기법)

  • Choi, Jae-Woong;Jeong, Eui-Rim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.104-113
    • /
    • 2022
  • In this paper, we propose deep learning-based target distance and velocity estimation technique for OFDM radar systems. In the proposed technique, the 2D periodogram is obtained via 2D fast Fourier transform (FFT) from the reflected signal after removing the modulation effect. The periodogram is the input to the conventional and proposed estimators. The peak of the 2D periodogram represents the target, and the constant false alarm rate (CFAR) algorithm is the most popular conventional technique for the target's distance and speed estimation. In contrast, the proposed method is designed using the multiple output convolutional neural network (CNN). Unlike the conventional CFAR, the proposed estimator is easier to use because it does not require any additional information such as noise power. According to the simulation results, the proposed CNN improves the mean square error (MSE) by more than 5 times compared with the conventional CFAR, and the proposed estimator becomes more accurate as the number of transmitted OFDM symbols increases.

Performance Analysis for Privacy-preserving Data Collection Protocols (개인정보보호를 위한 데이터 수집 프로토콜의 성능 분석)

  • Lee, Jongdeog;Jeong, Myoungin;Yoo, Jincheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1904-1913
    • /
    • 2021
  • With the proliferation of smart phones and the development of IoT technology, it has become possible to collect personal data for public purposes. However, users are afraid of voluntarily providing their private data due to privacy issues. To remedy this problem, mainly three techniques have been studied: data disturbance, traditional encryption, and homomorphic encryption. In this work, we perform simulations to compare them in terms of accuracy, message length, and computation delay. Experiment results show that the data disturbance method is fast and inaccurate while the traditional encryption method is accurate and slow. Similar to traditional encryption algorithms, the homomorphic encryption algorithm is relatively effective in privacy preserving because it allows computing encrypted data without decryption, but it requires high computation costs as well. However, its main cost, arithmetic operations, can be processed in parallel. Also, data analysis using the homomorphic encryption needs to do decryption only once at any number of data.

Calculating the collapse margin ratio of RC frames using soft computing models

  • Sadeghpour, Ali;Ozay, Giray
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.327-340
    • /
    • 2022
  • The Collapse Margin Ratio (CMR) is a notable index used for seismic assessment of the structures. As proposed by FEMA P695, a set of analyses including the Nonlinear Static Analysis (NSA), Incremental Dynamic Analysis (IDA), together with Fragility Analysis, which are typically time-taking and computationally unaffordable, need to be conducted, so that the CMR could be obtained. To address this issue and to achieve a quick and efficient method to estimate the CMR, the Artificial Neural Network (ANN), Response Surface Method (RSM), and Adaptive Neuro-Fuzzy Inference System (ANFIS) will be introduced in the current research. Accordingly, using the NSA results, an attempt was made to find a fast and efficient approach to derive the CMR. To this end, 5016 IDA analyses based on FEMA P695 methodology on 114 various Reinforced Concrete (RC) frames with 1 to 12 stories have been carried out. In this respect, five parameters have been used as the independent and desired inputs of the systems. On the other hand, the CMR is regarded as the output of the systems. Accordingly, a double hidden layer neural network with Levenberg-Marquardt training and learning algorithm was taken into account. Moreover, in the RSM approach, the quadratic system incorporating 20 parameters was implemented. Correspondingly, the Analysis of Variance (ANOVA) has been employed to discuss the results taken from the developed model. Additionally, the essential parameters and interactions are extracted, and input parameters are sorted according to their importance. Moreover, the ANFIS using Takagi-Sugeno fuzzy system was employed. Finally, all methods were compared, and the effective parameters and associated relationships were extracted. In contrast to the other approaches, the ANFIS provided the best efficiency and high accuracy with the minimum desired errors. Comparatively, it was obtained that the ANN method is more effective than the RSM and has a higher regression coefficient and lower statistical errors.

3-Step Security Vulnerability Risk Scoring considering CVE Trends (CVE 동향을 반영한 3-Step 보안 취약점 위험도 스코어링)

  • Jihye, Lim;Jaewoo, Lee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.87-96
    • /
    • 2023
  • As the number of security vulnerabilities increases yearly, security threats continue to occur, and the vulnerability risk is also important. We devise a security threat score calculation reflecting trends to determine the risk of security vulnerabilities. The three stages considered key elements such as attack type, supplier, vulnerability trend, and current attack methods and techniques. First, it reflects the results of checking the relevance of the attack type, supplier, and CVE. Secondly, it considers the characteristics of the topic group and CVE identified through the LDA algorithm by the Jaccard similarity technique. Third, the latest version of the MITER ATT&CK framework attack method, technology trend, and relevance between CVE are considered. We used the data within overseas sites provide reliable security information to review the usability of the proposed final formula CTRS. The scoring formula makes it possible to fast patch and respond to related information by identifying vulnerabilities with high relevance and risk only with some particular phrase.