본 논문에서는 H.264/AVC에서 가장 많은 연산량을 차지하는 인터 예측(inter prediction)을 고속으로 수행할 수 있는 방법을 제안하였다. 제안한 방법은 율-왜곡 최적화 기법(Rate-Distortion Optimization, RDO)이 적용된 JM(Joint Model)의 FME(Fast Motion Estimation)를 대상으로 예측된 움직임 벡터의 방향성을 고려하여 탐색영역을 결정한 후 적응적인 후보 나선형 탐색을 수행한다. 동시에 가변 블록 크기에 대하여 비용함수의 임계값(threshold)을 결정한 후 가변 구간 움직임 탐색을 수행함으로써 인터 예측의 부호화 복잡도를 감소시킨다. 다양한 영상들을 대상으로 실험한 결과 기존의 예측 방식에 최대 80%의 연산량을 줄일 수 있음을 확인하였다. 이에 따른 화질 열화는 평균 $0.05dB{\sim}0.19dB$에 불과하며, 압축률은 평균 0.58%의 미미한 감소를 보임으로써, 제안한 방법이 고속 인터 예측 알고리즘으로 매우 효율적인 방법임을 확인하였다.
본논문에서는 LFM (Linear Frequency Modulated) 신호를 사용하는 능동소나에서 적은 연산량으로 표적반사신호의 시간지연과 도플러를 추정하는 기법을 제안하였다. 제안한 기법에서는 일반적인 추정기법들이 가지는 연산량의 문제를 해결하기 위해 LFM 신호의 상호모호함수 (cross ambiguity function)에서 시간지연과 도플러의 관계를 나타내는 대수적인 관계식을 이용하였다. FML (Fast Maximum Likelihood) 기법을 기반으로 하여 시간지연과 도플러의 대수적 관계식을 유도하였으며, 이를 이용하여 일반적인 2차원 탐색 대신 2번의 1차원 탐색으로 시간지연과 도플러를 추정하였다. 다양한 신호대 잡음비 (SNR)에서 제안한 알고리즘의 추정오차를 분석하였으며, 제안한 알고리즘이 우수한 추정 성능을 보임을 확인하였다.
JSTS:Journal of Semiconductor Technology and Science
/
제13권5호
/
pp.430-442
/
2013
This paper presents a fast multi-reference frame integer motion estimator for H.264/AVC. The proposed system uses the previously proposed fast multi-reference frame algorithm. The previously proposed algorithm executes a full search area motion estimation in reference frames 0 and 1. After that, the search areas of motion estimation in reference frames 2, 3 and 4 are minimized by a linear relationship between the motion vector and the distances from the current frame to the reference frames. For hardware implementation, the modified algorithm optimizes the search area, reduces the overlapping search area and modifies a division equation. Because the search area is reduced, the amount of computation is reduced by 58.7%. In experimental results, the modified algorithm shows an increase of bit-rate in 0.36% when compared with the five reference frame standard. The pipeline structure and the memory controller are also adopted for real-time video encoding. The proposed system is implemented using 0.13 um CMOS technology, and the gate count is 1089K with 6.50 KB of internal SRAM. It can encode a Full HD video ($1920{\times}1080P@30Hz$) in real-time at a 135 MHz clock speed with 5 reference frames.
In this paper, we propose a fast ME (motion estimation) algorithm for MPEG-4 to H.264 Transcoder. Whereas 2 modes ($8{\times}8$, $16{\times}16$) are used for ME in MPEG-4 simple profile, ME using 7 modes is supported for further enhanced coding efficiency in H.264. The transcoding speed is affected dominantly by the computational complexity of encoder part in transcoder, where ME module of H.264 encoder has high complexity due to using 7 modes. In order to increase the speed of transcoding between MPEG-4 and H.264, we use 3 PMVs (predicted motion vectors) and the mode information of MBs (macroblocks) provided from the decoder part of transcoder. Since the proposed 3 PMVs are very close to an optimal motion vector, and we consider only some restricted modes according to the MB information transferred from decoder part, the proposed scheme can speed up the transcoding procedure without loss of image quality. We show experimental results which demonstrate the effectiveness of the proposed algorithm, where performance of our scheme is compared with that of the conventional fast algorithm for H.264.
우리는 H.264/AVC의 비디오 부호화에서 조기 인트라 모드 생략을 결정하기 위한 알고리즘을 제안한다. 새롭게 추가된 다양한 예측 방법들에 의한 매크로블록 부호화 방법은 압축의 효율의 증가를 가져오지만, 모든 부호화 가능한 모드에 대해 율-왜곡 함수를 계산하여 가장 효율이 좋은 모드를 선택하기 때문에 상당한 계산량을 요구한다. 이 논문에서는 인터 프레임에 대한 부호화 시간을 감소시키기 위해서, 적응적인 움직임 벡터 맵(AMVM)을 이용한 모드 결정 방법을 H.264/AVC 비디오 부호화기에서 제안한다. 제안한 알고리즘은 PSNR과 Bit rate 그리고 부호화 처리시간에 대해서 일반적으로 좋은 성능을 가진다.
PURPOSES : This study is to predict the Sound Pressure Level(SPL) obtained from the Noble Close ProXimity(NCPX) method by using the Extended Kalman Filter Algorithm employing the taylor series and Linear Regression Analysis based on the least square method. The objective of utilizing EKF Algorithm is to consider stochastically the effect of error because the Regression analysis is not the method for the statical approach. METHODS : For measuring the friction noise between the surface and vehicle's tire, NCPX method was used. With NCPX method, SPL can be obtained using the frequency analysis such as Discrete Fourier Transform(DFT), Fast Fourier Transform(FFT) and Constant Percentage Bandwidth(CPB) Analysis. In this research, CPB analysis was only conducted for deriving A-weighted SPL from the sound power level in terms of frequencies. EKF Algorithm and Regression analysis were performed for estimating the SPL regarding the vehicle velocities. RESULTS : The study has shown that the results related to the coefficient of determination and RMSE from EKF Algorithm have been improved by comparing to Regression analysis. CONCLUSIONS : The more the vehicle is fast, the more the SPL must be high. But in the results of EKF Algorithm, SPLs are irregular. The reason of that is the EKF algorithm can be reflected by the error covariance from the measurements.
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권12호
/
pp.6145-6158
/
2019
It is a challenge for the current security industry to respond to a large number of malicious codes distributed indiscriminately as well as intelligent APT attacks. As a result, studies using machine learning algorithms are being conducted as proactive prevention rather than post processing. The k-NN algorithm is widely used because it is intuitive and suitable for handling malicious code as unstructured data. In addition, in the malicious code analysis domain, the k-NN algorithm is easy to classify malicious codes based on previously analyzed malicious codes. For example, it is possible to classify malicious code families or analyze malicious code variants through similarity analysis with existing malicious codes. However, the main disadvantage of the k-NN algorithm is that the search time increases as the learning data increases. We propose a fast k-NN algorithm which improves the computation speed problem while taking the value of the k-NN algorithm. In the test environment, the k-NN algorithm was able to perform with only the comparison of the average of similarity of 19.71 times for 6.25 million malicious codes. Considering the way the algorithm works, Fast k-NN algorithm can also be used to search all data that can be vectorized as well as malware and SSDEEP. In the future, it is expected that if the k-NN approach is needed, and the central node can be effectively selected for clustering of large amount of data in various environments, it will be possible to design a sophisticated machine learning based system.
본 논문에서는 영상 백터 양자화를 위한 새로운 고속 부호화 기법을 제안하는데, 제안 기법은 다차원의 참조 표로 복수 특징의 부분 거리를 사용한다. 복수 특징을 사용하는 기존 기법은 탐색 순서와 연산 과정을 고려할 때 복수 특징을 단계적으로 처리한다. 반면에 제안 기법은 참조 표를 사용하여 복수 특징들을 동시에 활용한다. 본 논문에서는 가용한 수준의 메모리를 위해 테두리 효과를 고려하는 참조 표의 구성 방법과 참조 표의 부분 거리를 활용하며 현재의 탐색을 중지하는 방법을 상세하게 기술한다. 시뮬레이션 결과는 제안 기법의 효율성을 확인시켜 주는데, 부호책 크기가 256일 때 제안 기법은 OHTPDS 기법이나 $M-L_2NP$ 기법 등과 같이 최근에 제안된 기법들이 요구하는 연산량의 $70\%$ 수준까지 연산량을 감소시킨다. 가용한 수준의 전처리와 메모리를 사용함으로써 제안 기법은 전체탐색 기법과 통일한 화질을 유지하면서 전체 탐색 기법이 요구하는 연산량의 $2.2\%$ 이하로 연산량을 감소시킨다.
본 논문은 근사화 기법을 RLS 알고리즘에 적용한 고속 적응 알고리즘을 제안한다. 제안 알고리즘(D-RLS)은 QR 분해 RLS 알고리즘 유도 과정을 RLS 알고리즘으로부터 역으로 유도한 알고리즘이다. 유도된 알고리즘(D-RLS)은 입력 신호들이 서로 분리되어 있다는 가정을 사용한 알고리즘과 유사한 형태를 취한다. 이 알고리즘의 계산량은 $O(N^2)$ 보다 작은 O(N)이다. 이 알고리즘의 성능 평가를 위하여 FIR 시스템과 비선형(Volterra) 시스템의 시스템 식별 기법을 이용하였으며, 결과적으로 우수한 성능을 나타냄을 확인하였다.
본 논문은 TCP-Reno등의 TCP 등에서 사용되는 다른 혼잡 제어 알고리즘보다 에러가 많은 무선 환경에 더욱 강인한 향상된 TCP 혼잡 제어 알고리즘을 제안한다. 제안하는 알고리즘은 혼잡 윈도우 크기를 패킷 에러율과 현 TCP의 상태가 fast recovery 혹은 slow start 상태에 있느냐에 따라 결정한다. 시뮬레이션을 통해 제안하는 알고리즘의 유효성을 보여 주며, 여러 TCP 혼잡 제어 알고리즘들과 혼잡 윈도우 크기와 효율과 같은 성능 지표 관점에서 비교하였다. 제안하는 알고리즘은 다른 알고리즘보다 높은 PER하에서는 높은 효율을 가지며, 낮은 PER하에서는 비슷한 효율을 가진다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.