• Title/Summary/Keyword: fast turn-off switching

Search Result 25, Processing Time 0.032 seconds

Study on changes in electrical and switching characteristics of NPT-IGBT devices by fast neutron irradiation

  • Hani Baek;Byung Gun Park;Chaeho Shin;Gwang Min Sun
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3334-3341
    • /
    • 2023
  • We studied the irradiation effects of fast neutron generated by a 30 MeV cyclotron on the electrical and switching characteristics of NPT-IGBT devices. Fast neutron fluence ranges from 2.7 × 109 to 1.82 × 1013 n/cm2. Electrical characteristics of the IGBT device such as I-V, forward voltage drop and additionally switching characteristics of turn-on and -off were measured. As the neutron fluence increased, the device's threshold voltage decreased, the forward voltage drop increased significantly, and the turn-on and turn-off time became faster. In particular, the delay time of turn-on switching was improved by about 35% to a maximum of about 39.68 ns, and that of turn-off switching was also reduced by about 40%-84.89 ns, showing a faster switching.

Turn-off time improvement by fast neutron irradiation on pnp Si Bipolar Junction Transistor

  • Ahn, Sung Ho;Sun, Gwang Min;Baek, Hani
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.501-506
    • /
    • 2022
  • Long turn-off time limits high frequency operation of Bipolar Junction Transistors (BJTs). Turn-off time decreases with increases in the recombination rate of minority carriers at switching transients. Fast neutron irradiation on a Si BJT incurs lattice damages owing to the displacement of silicon atoms. The lattice damages increase the recombination rate of injected holes with electrons, and decrease the hole lifetime in the base region of pnp Si BJT. Fast neutrons generated from a beryllium target with 30 MeV protons by an MC-50 cyclotron were irradiated onto pnp Si BJTs in experiment. The experimental results show that the turn-off time, including the storage time and fall time, decreases with increases in fast neutron fluence. Additionally, it is confirmed that the base current increases, and the collector current and base-to-collector current amplification ratio decrease due to fast neutron irradiation.

Three-Terminal Hybrid-aligned Nematic Liquid Crystal Cell for Fast Turn-off Switching

  • Baek, Jong-In;Kim, Ki-Han;Kim, Jae-Chang;Yoon, Tae-Hoon
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.16-18
    • /
    • 2009
  • A three-terminal hybrid-aligned nematic liquid crystal (3T-HAN LC) cell capable of fast turn-off switching is proposed in this paper. By employing the relaxation process initiated by an electric-field pulse, a fast turn-off time of less than 1 ms can be obtained through optically hidden relaxation. A low operating voltage and high transmittance were confirmed through simulations and experiments.

Fast Switching of Vertically Aligned Liquid Crystals by Low-Temperature Curing of the Polymer Structure

  • Park, Byung Wok;Oh, Seung-Won;Kim, Jung-Wook;Yoon, Tae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.395-400
    • /
    • 2014
  • We proposed a method for fast turn-off switching of a vertically-aligned liquid crystal cell by low-temperature curing of the polymer structure. We confirmed that the turn-off times of the fabricated cells were reduced significantly as the curing temperature was lowered to $-20^{\circ}C$. We accounted for the effect of low-temperature curing on the turn-off time by using a mathematical model and by observing images obtained via scanning electron microscopy. We also confirmed that low-temperature curing is more effective in reducing the response time when the device is operated at a low temperature.

Effects of Fast Neutron Irradiation on Switching of Silicon Bipolar Junction Transistor

  • Sung Ho Ahn;Gwang Min Sun
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.3
    • /
    • pp.124-130
    • /
    • 2023
  • Background: When bipolar junction transistors (BJTs) are used as switches, their switching characteristics can be deteriorated because the recombination time of the minority carriers is long during turn-off transient. When BJTs operate as low frequency switches, the power dissipation in the on-state is large. However, when BJTs operate as high frequency switches, the power dissipation during switching transients increases rapidly. Materials and Methods: When silicon (Si) BJTs are irradiated by fast neutrons, defects occur in the Si bulk, shortening the lifetime of the minority carriers. Fast neutron irradiation mainly creates displacement damage in the Si bulk rather than a total ionization dose effect. Defects caused by fast neutron irradiation shorten the lifetime of minority carriers of BJTs. Furthermore, these defects change the switching characteristics of BJTs. Results and Discussion: In this study, experimental results on the switching characteristics of a pnp Si BJT before and after fast neutron irradiation are presented. The results show that the switching characteristics are improved by fast neutron irradiation, but power dissipation in the on-state is large when the fast neutrons are irradiated excessively. Conclusion: The switching characteristics of a pnp Si BJT were improved by fast neutron irradiation.

Fabrication of a fast Switching Thyristor by Proton Irradiation Method (양성자 조사법에 의한 고속스위칭 사이리스터의 제조)

  • Kim, Eun-Dong;Zhang, Changli;Kim, Sang-Cheol;Kim, Nam-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1264-1270
    • /
    • 2004
  • A fast switching thyristor with a superior trade-off property between the on-state voltage drop and the turn-off time could be fabricated by the proton irradiation method. After making symmetric thyristor dies with a voltage rating of 1,600 V from 350 $\mu$m thickness of 60 $\Omega$ㆍcm NTD-Si wafer and 200 $\mu$m width of n-base drift layer, the local carrier lifetime control by the proton irradiation was performed with help of the HI-13 tandem accelerator in China. The thyristor samples irradiated with 4.7 MeV proton beam showed a superior trade-off relationship of $V_{TM}$ = 1.55 V and $t_{q}$ = 15 $\mu$s attributed to a very narrow layer of short carrier lifetime(~1 $\mu$s) in the middle of its n-base drift region. To explain the small increase of $V_{TM}$ , we will introduce the effect of carrier compensation at the low carrier lifetime region by the diffusion current.ffusion current.t.

Fast Switching of a Polymer-networked Twisted Nematic Liquid Crystal Cell (폴리머 네트워크가 형성된 TN 액정셀의 고속응답 특성)

  • Jin, Hye-Jung;Kim, Ki-Han;Baek, Jong-In;Kim, Jae-Chang;Yoon, Tae-Hoon
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.2
    • /
    • pp.69-73
    • /
    • 2010
  • We propose a method to enhance the response time of a twisted nematic liquid crystal (TN-LC) cell using an anisotropic polymer. Polymer networks are formed by the phase separation between a LC and a UV-curable polymer. A TN-LC cell is exposed to UV light after the mixture of LC and anisotropic polymer is injected into the TN-LC cell. As a result, turn-off time of a TN-LC cell can be decreased remarkably without any loss of the transmittance. The turn-off time of a TN-LC cell with pure LC was 16 ms, but those of polymer networked TN-LC cells were 12, 11, and 9 ms when the concentration of the polymer was 3, 5, and 10 wt%, respectively. Moreover, by virtue of the polymer network, the backflow effect and the delay time generated during the turn-off process disappeared.

Optimal switching method of SI-Thyristor using internal impedance evaluation (SI-Thyristor의 내부 임피던스 계산을 통한 최적 스위칭 제어)

  • Ju, Heung-Jin;Kim, Bong-Seok;Hwang, Hwui-Dong;Park, Jeong-Ho;Ko, Kwang-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.122-122
    • /
    • 2010
  • A Static Induction Thyristor (SI-Thyristor) has a great potential as power semiconductor switch for pulsed power or high voltage applications with fast turn-on switching time and high switching stress endurance (di/dt, dV/dt). However, due to direct commutation between gate driver and SI-Thyristor, it is difficult to design optimal gate driver at the aspect of impedance matching for fast gate current driving into internal SI-Thyristor. Thus, to penetrate fast positive gate current into steady off state of the SI-Thyristor, it is proposed and proceeded the internal impedance calculation of the SI-Thyristor at steady off state with the gate driver while switching conditions that are indicated applied gate voltage, $V_{GK}$ and applied high voltage across anode and cathode, $V_{AK}$.

  • PDF

Switching Characteristics and PSPICE Modeling for MOS Controlled Thyristor (MOS 제어 다이리스터의 특성 해석 및 시뮬레이션을 위한 모델)

  • Lee, Young-Kook;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.237-239
    • /
    • 1994
  • The MOS-controlled thyristor(MCT) is a new power semi-conductor device that combines four layers thyristor structure presenting regenerative action and MOS-gate providing controlled turn-on and turn-off. The MCT has very fast switching speed owing to voltage controlled MOS-gate, and very low on-state voltage drop resulting from regenerative action of four layers thyristor structure. In addition, because of a higher dv/dt rating and di/dt rating, gate drive circuit and snubber circuit can be simpler comparing to other power switching devices. So recently much interest and endeavor is being applied to develop the performance and ratings of the MCT. This paper describes the switching characteristic of the MCT for its practical applications and presents a model for PSPICE circuit simulation. The model for PSPICE circuit simulation is compared to the experimental result using MCTV75P60F1 made by Harris co..

  • PDF

Effects of switching power supply on input transformer (스위칭 전원장치가 입력변압기에 미치는 영향)

  • Oh, Sang-Rok;Kim, Byung-Kweon;Seong, Se-Jin;Lee, Heung-Ho;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.815-817
    • /
    • 1993
  • In this paper, it is considered spike voltage that is generated by ignoring the recovery time of switching device, turn on and turn off time. In the same principle, this spike voltage will be applicable to diode recovery time. The spike voltage causes to break down insulation of input transformer. So, we will show how to remove spike voltage by optimizing value of R and C and using switching diode which have fast recovery time.

  • PDF