• Title/Summary/Keyword: fast search

Search Result 930, Processing Time 0.031 seconds

A Simplified Method to Estimate Travel Cost based on Traffic-Adaptable Heuristics for Accelerating Path Search

  • Kim, Jin-Deog
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.3
    • /
    • pp.239-244
    • /
    • 2007
  • In the telematics system, a reasonable path search time should be guaranteed from a great number of user's queries, even though the optimal path with minimized travel time might be continuously changed by the traffic flows. Thus, the path search method should consider traffic flows of the roads and the search time as well. However, the existing path search methods are not able to cope efficiently with the change of the traffic flows and to search rapidly paths simultaneously. This paper proposes a new path search method for fast computation. It also reflects the traffic flows efficiently. Especially, in order to simplify the computation of variable heuristic values, it employs a simplification method for estimating values of traffic-adaptable heuristics. The experiments are carried out with the $A^*$ algorithm and the proposed method in terms of the execution time, the number of node accesses and the accuracy. The results obtained from the experiments show that the method achieves very fast execution time and the reasonable accuracy as well.

Fast Motion Estimation Algorithm Using Importance of Search Range and Adaptive Matching Criterion (탐색영역의 중요도와 적응적인 매칭기준을 이용한 고속 움직임 예측 알고리즘)

  • Choi, Hong-Seok;Kim, Jong-Nam;Jeong, Shin-Il
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.16 no.4
    • /
    • pp.129-133
    • /
    • 2015
  • In this paper, we propose a fast motion estimation algorithm which is important in the performance of video encoding. Conventional fast motion estimation algorithms have serious problems of low prediction quality in some frames and still much computation. In the paper, we propose an algorithm that reduces unnecessary computations only, while keeping prediction quality almost similar to that of the full search. The proposed algorithm uses distribution of probability of motion vectors, divides search range into several groups according to its importance, and applies adaptive block matching criteria for each group of search range. The proposed algorithm takes only 3~5% in computational amount and has decreased prediction quality about 0~0.01dB compared with the fast full search algorithm.

Motion-based Fast Fractional Motion Estimation Scheme for H.264/AVC (움직임 예측을 이용한 고속 부화소 움직임 추정기)

  • Lee, Kwang-Woo;SunWoo, Myung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.74-79
    • /
    • 2008
  • In an H.264/AVC video encoder, the motion estimation at fractional pixel accuracy improves a coding efficiency and image quality. However, it requires additional computation overheads for fractional search and interpolation, and thus, reducing the computation complexity of fractional search becomes more important. This paper proposes fast fractional search algorithms by combining the SASR(Simplified Adaptive Search Range) and the MSDSP(Mixed Small Diamond Search Pattern) with the predicted fractional motion vector. Compared with the full search and the prediction-based directional fractional pixel search, the proposed algorithms can reduce up to 93.2% and 81% of fractional search points, respectively with the maximum PSNR lost less than 0.04dB. Therefore, the proposed fast search algorithms are quite suitable for mobile applications requiring low power and complexity.

Fast Motion Estimation Algorithm Using Early Detection of Optimal Candidates with Priority and a Threshold (우선순위와 문턱치를 가지고 최적 후보 조기 검출을 사용하는 고속 움직임 예측 알고리즘)

  • Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.2
    • /
    • pp.55-60
    • /
    • 2020
  • In this paper, we propose a fast block matching algorithm of motion estimation using early detection of optimal candidate with high priority and a threshold. Even though so many fast algorithms for motion estimation have been published to reduce computational reduction full search algorithm, still so many works to improve performance of motion estimation are being reported. The proposed algorithm calculates block matching error for each candidate with high priority from previous partial matching error. The proposed algorithm can be applied additionally to most of conventional fast block matching algorithms for more speed up. By doing that, we can find the minimum error point early and get speed up by reducing unnecessary computations of impossible candidates. The proposed algorithm uses smaller computation than conventional fast full search algorithms with the same prediction quality as the full search algorithm. Experimental results shows that the proposed algorithm reduces 30~70% compared with the computation of the PDE and full search algorithms without any degradation of prediction quality and further reduces it with other fast lossy algorithms.

A Fast Block Matching Algorithm using Unit-Diamond and Flat-Hexagonal Search Patterns (단위 다이아몬드와 납작한 육각패턴을 이용한 고속 블록 정합 알고리즘)

  • 남현우;위영철;김하진
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.1
    • /
    • pp.57-65
    • /
    • 2004
  • In the block matching algorithm, search patterns of different shapes or sizes and the distribution of motion vectors have a large impact on both the searching speed and the image quality. In this paper, we propose a new fast block matching algorithm using the unit-diamond search pattern and the flat-hexagon search pattern. Our algorithm first finds the motion vectors that are close to the center of search window using the unit-diamond search pattern, and then fastly finds the other motion vectors that are not close to the center of search window using the flat-hexagon search pattern. Through experiments, compared with the hexagon-based search algorithm(HEXBS), the proposed unit-diamond and flat-hexagonal pattern search algorithm(UDFHS) improves as high as 11∼51% in terms of average number of search point per motion vector estimation and improves about 0.05∼0.74㏈ in terms of PSNR(Peak Signal to Noise Ratio).

Modified Cross Search Algorithm for Fast Block Matching Motion Estimation (고속 블록 정합 움직임 추정을 위한 개선된 교차 탐색 알고리즘)

  • Ko, Byung-Kwan;Kwak, Tong-Ill;Hwang, Bo-Hyun;Yun, Jong-Ho;Choi, Myung-Ryul
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.811-812
    • /
    • 2008
  • In this paper, a modified cross search algorithm for fast block matching motion estimation is proposed. Various Motion Estimation (ME) algorithms have been proposed since ME requires large computational complexity. The proposed algorithm employs Modified Cross Search Pattern (MCSP) to search the motion vector. Efficient compression can be achieved since Modified Cross Search Algorithm (MCSA) simplifies the search pattern to reduce the computational complexity. The experimental results show that proposed algorithm reduces the search points up to 29% compared to conventional methods.

  • PDF

Block Matching Motion Estimation Using Fast Search Algorithm (고속 탐색 알고리즘을 이용한 블록정합 움직임 추정)

  • 오태명
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.3
    • /
    • pp.32-40
    • /
    • 1999
  • In this paper, we present a fast block matching motion estimation algorithm based on successive elimination algorithm (SEA). Based on the characteristic of center-biased motion vector distribution in the search area, the proposed method improves the performance of the SEA with a reduced the number of the search positions in the search area, In addition, to reduce the computational load, this method is combined with both the reduced bits mean absolute difference (RBMAD) matching criterion which can be reduced the computation complexity of pixel comparison in the block matching and pixel decimation technique which reduce the number of pixels used in block matching. Simulation results show that the proposed method provides better performance than existing fast algorithms and similar to full-search block motion estimation algorithm.

  • PDF

A Study on the Fast Search Algorithm for Vector Quantization (벡터 양자화를 위한 고속 탐색 알고리듬에 관한 연구)

  • 지상현;김용석;이남일;강상원
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.293-298
    • /
    • 2003
  • In this paper. we propose a fast search algorithm for nearest neighbor vector quantization (NNVQ). The proposed algorithm rejects those codewords which can not be the nearest codeword and reduces the search range of codebook. Hence it reduces computational time and complexity in encoding process, while it provides the same SD performance as the conventional full search algorithm. We apply the proposed algorithm to the adaptive multi-rate (AMR) speech coder and a general vector quantizer designed by LBG. algorithm. Simulation results show effectiveness of the proposed algorithm.

$L_2$-Norm Pyramid--Based Search Algorithm for Fast VQ Encoding (고속 벡터 양자 부호화를 위한 $L_2$-평균 피라미드 기반 탐색 기법)

  • Song, Byeong-Cheol;Ra, Jong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.1
    • /
    • pp.32-39
    • /
    • 2002
  • Vector quantization for image compression needs expensive encoding time to find the closest codeword to the input vector. This paper proposes a search algorithm for fast vector quantization encoding. Firstly, we derive a robust condition based on the efficient topological structure of the codebook to dramatically eliminate unnecessary matching operations from the search procedure. Then, we Propose a fast search algorithm using the elimination condition. Simulation results show that with little preprocessing and memory cost, the encoding time of the proposed algorithm is reduced significantly while the encoding quality remains the same with respect to the full search algorithm. It is also found that the Proposed algorithm outperforms the existing search algorithms.

Fast Motion Estimation using Adaptive Search Region Prediction (적응적 탐색 영역 예측을 이용한 고속 움직임 추정)

  • Ryu, Kwon-Yeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1187-1192
    • /
    • 2008
  • This paper proposes a fast motion estimation using an adaptive search region and a new three step search. The proposed method improved in the quality of motion compensation image as $0.43dB{\sim}2.19dB$, according as it predict motion of current block from motion vector of neigher blocks, and adaptively set up search region using predicted motion information. We show that the proposed method applied a new three step search pattern is able to fast motion estimation, according as it reduce computational complexity per blocks as $1.3%{\sim}1.9%$ than conventional method.