• Title/Summary/Keyword: fast retrieval method

Search Result 107, Processing Time 0.021 seconds

Optimization of Condensation Ratio for Fast Image Retrieval (영상 검색의 속도 향상을 위한 차원 축소율 최적화)

  • 이세한;이주호;조정원;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2003.07d
    • /
    • pp.1515-1518
    • /
    • 2003
  • This paper suggests the condensed two-stage retrieval method for fast image retrieval in the content-based image retrieval system, and proves the validity of the performance. The condensed two-stage retrieval method reduces the overall response time remarkably while it maintains relevance with the conventional exhaustive search method. It is explained by properties of the Cauchy-Schwartz inequality. In experimental result, it turns out that there is an optimal value of condensation ratio which minimizes the overall response time. We analyze the optimal condensation ratio by modeling a similarity computation time mathematically.

  • PDF

Fast Leaf Recognition and Retrieval Using Multi-Scale Angular Description Method

  • Xu, Guoqing;Zhang, Shouxiang
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1083-1094
    • /
    • 2020
  • Recognizing plant species based on leaf images is challenging because of the large inter-class variation and inter-class similarities among different plant species. The effective extraction of leaf descriptors constitutes the most important problem in plant leaf recognition. In this paper, a multi-scale angular description method is proposed for fast and accurate leaf recognition and retrieval tasks. The proposed method uses a novel scale-generation rule to develop an angular description of leaf contours. It is parameter-free and can capture leaf features from coarse to fine at multiple scales. A fast Fourier transform is used to make the descriptor compact and is effective in matching samples. Both support vector machine and k-nearest neighbors are used to classify leaves. Leaf recognition and retrieval experiments were conducted on three challenging datasets, namely Swedish leaf, Flavia leaf, and ImageCLEF2012 leaf. The results are evaluated with the widely used standard metrics and compared with several state-of-the-art methods. The results and comparisons show that the proposed method not only requires a low computational time, but also achieves good recognition and retrieval accuracies on challenging datasets.

Fast Image Retrieval Based on Object Regions Using Bidirectional Round Filter (양방향 반올림 필터를 이용한 객체 영역 기반 고속 영상 검색)

  • 류권열;강경원
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.2
    • /
    • pp.240-246
    • /
    • 2003
  • In this paper, we propose the fast image retrieval method based on object regions using bidirectional round filter in the wavelet transform region. A conventional method that extracts feature vectors on the whole of subband is reduced retrieval efficiency, because of unnecessary background information. The proposed method that extracts feature vectors on the only object region of subband by using bidirectional round filter improve retrieval efficiency, because of removing of background information. And it certainly maintains retrieval efficiency in case of reduction of feature vectors according to color information. Consequently, the retrieval efficiency is improved with 2.5%∼5.3% values, which have a little changes according to characteristics of image.

  • PDF

A Study of Noise Robust Content-Based Music Retrieval System (잡음에 강인한 내용기반 음악 검색 시스템에 대한 연구)

  • Yoon, Won-Jung;Park, Kyu-Sik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.148-155
    • /
    • 2008
  • In this paper, we constructed the noise robust content-based music retrieval system in mobile environment. The performance of the proposed system was verified with ZCPA feature which is blown to have noise robust characteristic in speech recognition application. In addition, new indexing and fast retrieval method are proposed to improve retrieval speed about 99% compare to exhaustive retrieval for large music DB. From the computer simulation results in noise environment of 15dB - 0dB SNR, we confirm the superior performance of the proposed system about 5% - 30% compared to MFCC and FBE(filter bank energy) feature.

Content-Based Retrieval using MPEG-7 Visual Descriptor and Hippocampal Neural Network (MPEG-7 시각 기술자와 해마 신경망을 이용한 내용기반 검색)

  • Kim Young Ho;Kang Dae-Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.12
    • /
    • pp.1083-1087
    • /
    • 2005
  • As development of digital technology, many kinds of multimedia data are used variously and requirements for effective use by user are increasing. In order to transfer information fast and precisely what user wants, effective retrieval method is required. As existing multimedia data are impossible to apply the MPEG-1, MPEG-2 and MPEG-4 technologies which are aimed at compression, store and transmission. So MPEG-7 is introduced as a new technology for effective management and retrieval of multimedia data. In this paper, we extract content-based features using color descriptor among the MPEG-7 standardization visual descriptor, and reduce feature data applying PCA(Principal Components Analysis) technique. We model the cerebral cortex and hippocampal neural network in engineering domain, and team content-based feature vectors fast and apply the hippocampal neural network algorithm to compose of optimized feature. And then we present fast and precise retrieval effect when indexing and retrieving.

The Content-based Image Retrieval by Using Variable Block Size and Block Matching Algorithm (가변 블록 크기와 블록 매칭 알고리즘의 조합에 의한 내용기반 화상 검색)

  • Kang, Hyun-Inn;Baek, Kwang-Ryul
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.47-54
    • /
    • 1998
  • With the increasing popularity of the use of large-volume image database in various application, it becomes imperative to build an efficient and fast retrieval system to browse through the entire database. We present a new method for a content-based image retrieval by using a variable block size and block matching algorithm. Proposed approach is reflecting image features that exploit visual cues such as color and space allocation of image and is getting the fast retrieval time by automatical convergence of retrieval times which adapt to wanting similarity value. We have implemented this technique and tested it for a database of approximately 150 images. The test shows that a 1.9 times fast retrieval time compare to J & V algorithm at the image retrieval efficiency 0.65 and that a 1.83 times fast retrieval time compare to predefined fixed block size.

  • PDF

Fast and Accurate Visual Place Recognition Using Street-View Images

  • Lee, Keundong;Lee, Seungjae;Jung, Won Jo;Kim, Kee Tae
    • ETRI Journal
    • /
    • v.39 no.1
    • /
    • pp.97-107
    • /
    • 2017
  • A fast and accurate building-level visual place recognition method built on an image-retrieval scheme using street-view images is proposed. Reference images generated from street-view images usually depict multiple buildings and confusing regions, such as roads, sky, and vehicles, which degrades retrieval accuracy and causes matching ambiguity. The proposed practical database refinement method uses informative reference image and keypoint selection. For database refinement, the method uses a spatial layout of the buildings in the reference image, specifically a building-identification mask image, which is obtained from a prebuilt three-dimensional model of the site. A global-positioning-system-aware retrieval structure is incorporated in it. To evaluate the method, we constructed a dataset over an area of $0.26km^2$. It was comprised of 38,700 reference images and corresponding building-identification mask images. The proposed method removed 25% of the database images using informative reference image selection. It achieved 85.6% recall of the top five candidates in 1.25 s of full processing. The method thus achieved high accuracy at a low computational complexity.

Image Retrieval using Fast Wavelet Histogram and Color Information (고속 웨이블렛 히스토그램과 색상정보를 이용한 영상검색)

  • 김주현;이배호
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.194-197
    • /
    • 2000
  • Wavelet transform used for content-based image retrieval has good performance in texture image. Image features for content-based image retrieval are color, texture, and shape. In this paper, we use color feature extracted from HSI color space known as most similar vision system to human vision system and texture feature extracted from wavelet histogram which has multiresolution property. Proposed method is compared with HSI color histogram method and wavelet histogram method. It is shown better performance.

  • PDF

Object-Based Image Search Using Color and Texture Homogeneous Regions (유사한 색상과 질감영역을 이용한 객체기반 영상검색)

  • 유헌우;장동식;서광규
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.455-461
    • /
    • 2002
  • Object-based image retrieval method is addressed. A new image segmentation algorithm and image comparing method between segmented objects are proposed. For image segmentation, color and texture features are extracted from each pixel in the image. These features we used as inputs into VQ (Vector Quantization) clustering method, which yields homogeneous objects in terns of color and texture. In this procedure, colors are quantized into a few dominant colors for simple representation and efficient retrieval. In retrieval case, two comparing schemes are proposed. Comparing between one query object and multi objects of a database image and comparing between multi query objects and multi objects of a database image are proposed. For fast retrieval, dominant object colors are key-indexed into database.

Fast Computation of the Radius of a Bounding Circle in a Binary Image (이진영상에서 바운딩 서클의 빠른 계산방법)

  • Kim Whoi-vul;Ryoo Kwang-seok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.7
    • /
    • pp.453-457
    • /
    • 2005
  • With the expansion of Internet, a variety of image databases are widely used and it is needed to select the part of an image what he wants. In contents-based image retrieval system, Zernikie moment and ART Descriptors are used fur shape descriptors in MPEC-7. This paper presents a fast computation method to determine the radius of a bounding circle that encloses an object in a binary image. With conventional methods, the whole area of the image should be scanned first and the distance from every pixel to the center point be computed. The proposed 4-directional scan method and fast circle-drawing algorithm is utilized to minimize the scanning area and reduce the number of operations fur computing the distance. Experimental results show that proposed method saves the computation time to determine the radius of a bounding circle efficiently.