• Title/Summary/Keyword: fast mode decision

Search Result 170, Processing Time 0.022 seconds

Fast mode decision by skipping variable block-based motion estimation and spatial predictive coding in H.264 (H.264의 가변 블록 크기 움직임 추정 및 공간 예측 부호화 생략에 의한 고속 모드 결정법)

  • 한기훈;이영렬
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.417-425
    • /
    • 2003
  • H.264, which is the latest video coding standard of both ITU-T(International Telecommunication Union-Telecommunication standardization sector) and MPEG(Moving Picture Experts Group), adopts new video coding tools such as variable block size motion estimation, multiple reference frames, quarter-pel motion estimation/compensation(ME/MC), 4${\times}$4 Integer DCT(Discrete Cosine Transform), and Rate-Distortion Optimization, etc. These new video coding tools provide good coding of efficiency compared with existing video coding standards as H.263, MPEG-4, etc. However, these new coding tools require the increase of encoder complexity. Therefore, in order to apply H.264 to many real applications, fast algorithms are required for H.264 coding tools. In this paper, when encoder MacroBlock(MB) mode is decided by rate-distortion optimization tool, fast mode decision algorithm by skipping variable block size ME/MC and spatial-predictive coding, which occupies most encoder complexity, is proposed. In terms of computational complexity, the proposed method runs about 4 times as far as JM(Joint Model) 42 encoder of H.264, while the PSNR(peak signal-to-noise ratio)s of the decoded images are maintained.

Fast Mode Decision using Global Disparity Vector for Multi-view Video Coding (다시점 영상 부호화에서 전역 변이 벡터를 이용한 고속 모드 결정)

  • Han, Dong-Hoon;Cho, Suk-Hee;Hur, Nam-Ho;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.13 no.3
    • /
    • pp.328-338
    • /
    • 2008
  • Multi-view video coding (MVC) based on H.264/AVC encodes multiple views efficiently by using a prediction scheme that exploits inter-view correlation among multiple views. However, with the increase of the number of views and use of inter-view prediction among views, total encoding time will be increased in multiview video coding. In this paper, we propose a fast mode decision using both MB(Macroblock)-based region segmentation information corresponding to each view in multiple views and global disparity vector among views in order to reduce encoding time. The proposed method achieves on average 40% reduction of total encoding time with the objective video quality degradation of about 0.04 dB peak signal-to-noise ratio (PSNR) by using joint multi-view video model (JMVM) 4.0 that is the reference software of the multiview video coding standard.

Fast Intra Prediction Mode Decision using Most Probable Mode for H.264/AVC (H.264/AVC에서의 최고 확률 모드를 이용한 고속 화면 내 예측 모드 결정)

  • Kim, Dae-Yeon;Kim, Jeong-Pil;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.15 no.3
    • /
    • pp.380-390
    • /
    • 2010
  • The most recent standard video codec, H.264/AVC achieves significant coding efficiency by using a rate-distortion optimization(RDO). The RDO is a measurement for selecting the best mode which minimizes the Lagrangian cost among several modes. As a result, the computational complexity is increased drastically in encoder. In this paper, a method for fast intra prediction mode decision is proposed to reduce the RDO complexity. To speed up Intra$4{\times}4$ and Chroma Intra encoding, the proposed method decides the case that MPM (Most Probable Mode) is the best prediction mode. In this case, the RDO process is skipped, and only MPM is used for encoding the block in Intra$4{\times}4$. And the proposed method is also applied to the chroma Intra prediction mode in a similar way to the Intra$4{\times}4$. The experimental results show that the proposed method achieves an average encoding time saving of about 63% with negligible loss of PSNR (Peak Signal-to-Noise Ratio).

Fast Intra Mode Decision Method in HEVC (고속 HEVC 부호화기 설계를 위한 화면내 예측 모드 결정 방법)

  • Lee, Sunyoung;Noh, Gyeonggi;Kim, Hyeongduck;Ryoo, Sungul;Shin, Jae-Seob
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.07a
    • /
    • pp.560-563
    • /
    • 2015
  • 동영상 부호화 표준, HEVC(High Efficiency Video Coding)는 부호화 성능을 극대화하기 위해 총 35 개의 화면내 예측 모드를 사용한다. 화면내 예측 모드는 각도를 가진 모드와 각도가 없는 모드로 구성된다. 부호화 성능을 높이기 위해 사용한 다수의 화면내 예측 모드 방법은 HEVC 부호화기의 복잡도를 증대 시키는데 큰 역할을 하게 된다. 본 논문은 총 35 개의 화면내 예측 모드 중 현재 블록의 주변 블록 정보로부터 얻을 수 있는 예측 모드들 및 각도를 대표하는 예측 모드들을 선별적으로 추려서 후보 예측 모드를 결정하고, 평가 과정을 거쳐 해당 후보 모드 중에서 최종 화면내 예측 모드를 결정한다. 본 제안 방법은 35 개의 전체 화면내 예측 모드 중 소수의 후보 모드만을 평가함으로써 HEVC 표준의 화면내 예측 및 부호화 과정의 복잡도를 감소시키려 한다. 제안 방법을 다양한 테스트 시퀀스에 적용한 결과, 35 개 화면내 예측 모드를 전부 사용한 경우와 비교하여 1.1%의 BD-rates 이 증가하면서 18.7%의 부호화기 복잡도를 감소시킬 수 있었다.

  • PDF

A Fast CU Size Decision Optimal Algorithm Based on Neighborhood Prediction for HEVC

  • Wang, Jianhua;Wang, Haozhan;Xu, Fujian;Liu, Jun;Cheng, Lianglun
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.959-974
    • /
    • 2020
  • High efficiency video coding (HEVC) employs quadtree coding tree unit (CTU) structure to improve its coding efficiency, but at the same time, it also requires a very high computational complexity due to its exhaustive search processes for an optimal coding unit (CU) partition. With the aim of solving the problem, a fast CU size decision optimal algorithm based on neighborhood prediction is presented for HEVC in this paper. The contribution of this paper lies in the fact that we successfully use the partition information of neighborhood CUs in different depth to quickly determine the optimal partition mode for the current CU by neighborhood prediction technology, which can save much computational complexity for HEVC with negligible RD-rate (rate-distortion rate) performance loss. Specifically, in our scheme, we use the partition information of left, up, and left-up CUs to quickly predict the optimal partition mode for the current CU by neighborhood prediction technology, as a result, our proposed algorithm can effectively solve the problem above by reducing many unnecessary prediction and partition operations for HEVC. The simulation results show that our proposed fast CU size decision algorithm based on neighborhood prediction in this paper can reduce about 19.0% coding time, and only increase 0.102% BD-rate (Bjontegaard delta rate) compared with the standard reference software of HM16.1, thus improving the coding performance of HEVC.

Down Sampling for Fast Rough Mode Decision for a Hardware-based HEVC Intra-frame encoder (하드웨어 기반 HEVC 인트라 인코더에서 다운 샘플링을 사용한 고속 Rough Mode Decision)

  • Jang, Ji Hun;Rhee, Chae Eun
    • Journal of Broadcast Engineering
    • /
    • v.21 no.3
    • /
    • pp.341-348
    • /
    • 2016
  • HEVC is the next compression standard and is expected to be used widely replacing the conventional H.264/AVC standard. The compression ratio of the HEVC is twice times than H.264/AVC, whereas its computational complexity is increased by up to 40%. Many research efforts have been made to reduce the computational complexity and to speed up encoding. For intra coding, the rough mode decision (RMD) is commonly applied. The rate-distortion optimization (RDO) process to decide the best mode is too complex so that RMD chooses the candidate modes with a simple process and sends the candidates to RDO process. However, for large-size blocks, the RMD also requires considerable computations. In this paper, a down-sampling scheme is proposed for the RMD process. The reference pixel loading, predicted pixel generation are performed using the down-sampled pixel data. When the proposed scheme is applied to the RMD, the computational complexity is reduced by 70% with a marginal bitrate increase of 0.04%. In terms of area of hardware-based RMD, the gate count and the buffer size is reduced 33% and 66%, respectively.

Gradient-Based Methods of Fast Intra Mode Decision and Block Partitioning in VVC (VVC의 기울기 기반 화면내 예측모드 결정 및 블록분할 고속화 기법)

  • Yoon, Yong-Uk;Park, Dohyeon;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.25 no.3
    • /
    • pp.338-345
    • /
    • 2020
  • Versatile Video Coding (VVC), which has been developing as a next generation video coding standard, has adopted various techniques to achieve more than twice the compression performance of HEVC (High Efficiency Video Coding). The recently released VVC Test Model (VTM) shows 38% Bjontegaard Delta bitrate (BD-rate) improvement and 9x/1.6x encoding/decoding complexity over HEVC. In order to reduce such increased complexity, various fast algorithms have been proposed. In this paper, gradient-based methods of fast intra mode decision and block splitting are presented. Experimental results show that, compared to VTM6.0, the proposed method gives up to 65% encoding time reduction with 3.54% BD-rate loss in All-Intra (AI) configuration.

Fast HEVC Encoding based on CU-Depth First Decision (CU 깊이 우선 결정 기반의 HEVC 고속 부호화 방법)

  • Yoo, Sung-Eun;Ahn, Yong-Jo;Sim, Dong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.40-50
    • /
    • 2012
  • In this paper we propose the fast CU (Coding Unit) mode decision method. To reduce computational complexity and save encoding time of HEVC, we divided CU, PU (Prediction Unit) and TU (Transform Unit) decision process into two stages. In the first stage, because $2N{\times}2N$ PU mode is mostly selected among $2N{\times}2N$, $N{\times}2N$, $2N{\times}N$, $N{\times}N$ PU modes, proposed algorithm uses only $2N{\times}2N$ PU mode deciding depth of each CU in the LCU (Largest CU). And then, proposed method decides exact PU and TU modes at the depth level which is decided in the first stage. In addition, early skip decision rule is applied to the proposed method to obtain more efficient computational complexity reduction. The proposed method reduces computational complexity of the HEVC encoder by simplifying a CU depth decision method. We could obtain about 50% computational complexity reduction in comparison with HM 3.3 HEVC reference software while bitrate compressed by the proposed algorithm increases only 2%.

A study on the Improvement of Performance for H.264/AVC Encoder (H.264/AVC 부호기의 성능 향상에 관한 연구)

  • Kim Yong-Wook;Huh Do-Cuen
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1405-1409
    • /
    • 2004
  • This paper is studied new block mode decision algorithm for H.264/AVC. The fast block mode decision algorithm is consist of block range decision algorithm. The block range decision algorithm classifies the block over 8$\times$8 size or below for 16${\times}$16 macroblock to decide the size and type of sub blocks. As the sub blocks of 8$\times$8, 8r4, 4$\times$8 and 4$\times$4, which are the blocks below 8$\times$8 size, include important motion information, the exact sub block decision is required. RDC(RDO cost) is used as the matching parameter for the exact sub block decision. RDC is calculated with motion strength which is the mean value of neighbor pixels of each sub block. The sub block range decision reduces encoding arithmetic amount by 34.62% on the average more than the case not using block range decision. The block mode decision using motion strength shows improvement of PSNR of 0.05[dB].

Fast Intra Prediction in HEVC using Transform Coefficients and Coded Block Flag (변환계수와 CBF를 이용한 HEVC 고속 화면 내 예측)

  • Kim, Nam-Uk;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.21 no.2
    • /
    • pp.140-148
    • /
    • 2016
  • HEVC(High Efficient Video Coding) has twice times better compression ratio than H.264/AVC, but since the computational complexity has significantly increased in the encoder side, it may cause difficulty in real-time SW implementation in the encoder side. This paper proposes two methods about fast intra prediction. First, fast mode and prediction unit decision method using transform coefficients of the original block is proposed. and second, fast prediction unit decision method using coded block flag(cbf) is proposed. The proposed method achieves 42% encoder speed up with 0.8% bitrate increase compared with HM16.0.