• Title/Summary/Keyword: fast acquisition

Search Result 268, Processing Time 0.023 seconds

Optimization of Yonsei Single-Photon Emission Computed Tomography (YSECT) Detector for Fast Inspection of Spent Nuclear Fuel in Water Storage

  • Hyung-Joo Choi;Hyojun Park;Bo-Wi Cheon;Kyunghoon Cho;Hakjae Lee;Yong Hyun Chung;Yeon Soo Yeom;Sei Hwan You;Hyun Joon Choi;Chul Hee Min
    • Journal of Radiation Protection and Research
    • /
    • v.49 no.1
    • /
    • pp.29-39
    • /
    • 2024
  • Background: The gamma emission tomography (GET) device has been reported a reliable technique to inspect partial defects within spent nuclear fuel (SNF) of pin-by-pin level. However, the existing GET devices have low accuracy owing to the high attenuation and scatter probability for SNF inspection condition. The purpose of this study is to design and optimize a Yonsei single-photon emission computed tomography version 2 (YSECT.v.2) for fast inspection of SNF in water storage by acquisition of high-quality tomographic images. Materials and Methods: Using Geant4 (Geant4 Collaboration) and DETECT-2000 (Glenn F. Knoll et al.) Monte Carlo simulation, the geometrical structure of the proposed device was determined and its performance was evaluated for the 137Cs source in water. In a Geant4-based assessment, proposed device was compared with the International Atomic Energy Agency (IAEA)-authenticated device for the quality of tomographic images obtained for 12 fuel sources in a 14 × 14 Westinghouse-type fuel assembly. Results and Discussion: According to the results, the length, slit width, and septal width of the collimator were determined to be 65, 2.1, and 1.5 mm, respectively, and the material and length of the trapezoidal-shaped scintillator were determined to be gadolinium aluminum gallium garnet and 45 mm, respectively. Based on the results of performance comparison between the YSECT.v.2 and IAEA's device, the proposed device showed 200 times higher performance in gamma-detection sensitivity and similar source discrimination probability. Conclusion: In this study, we optimally designed the GET device for improving the SNF inspection accuracy and evaluated its performance. Our results show that the YSECT.v.2 device could be employed for SNF inspection.

GPS L5 Signal Tracking Scheme Using GPS L1 Signal Tracking Results (GPS L1 신호추적 결과를 이용한 GPS L5 신호추적 기법)

  • Joo, Inone;Lee, Sanguk
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.99-104
    • /
    • 2012
  • The United States will proceed with the effort to modernize the GPS system, and one of its main content is to provide L5 signal. L5 will be transmitted in a radio band reserved exclusively for aviation safety services. And, L5, in combination with L1, will improve the position accuracy via ionospheric correction and robustness via signal redundancy. However, The acquisition processing time of L5 takes longer than that of L1 as the code length of L5 is 10 times longer than that of L1. To reduce this acquisition processing time, a higher number of correlators in the aquisition module should be used. However, there is a problem that this causes increase in the complexity of the correlator configuration and the computation power. So, in this paper, we propose L5 signal tracking scheme using tracking results in the GPS L1/L5 receiver. The proposed scheme could reduce the hardware complexity as the GPS L5 signal acquisition module is not needed, and provide fast and stable tracking of L5 signal by aiding L1 tracking results such as PRN, the code phase synchronization, and the Doppler frequency. The feasibility of the proposed scheme is demonstrated through simulation results.

Carotid Intraplaque Hemorrhage Imaging: Diagnostic Value of High Signal Intensity Time-of-Flight MR Angiography Compared with Magnetization-Prepared Rapid Acquisition with Gradient-Echo Sequencing

  • Ahn, Ji-eun;Kwak, Hyo Sung;Chung, Gyung Ho;Hwang, Seung Bae
    • Investigative Magnetic Resonance Imaging
    • /
    • v.22 no.2
    • /
    • pp.94-101
    • /
    • 2018
  • Purpose: To determine the value of the appearance of the high signal intensity halo sign for detecting carotid intraplaque hemorrhage (IPH) on maximum intensity projection (MIP) of time-of-flight (TOF) MR angiography (MRA), based on high signal intensity on magnetization-prepared rapid acquisition with gradient-echo (MPRAGE) sequencing. Materials and Methods: A total of 78 carotid arteries in 65 patients with magnetization-prepared rapid acquisition gradient-echo (MPRAGE) positive on carotid plaque MR imaging were included in this study. High-resolution MR imaging was performed on a 3.0-T scanner prior to carotid endarterectomy or carotid artery stenting. Fast spin-echo T1- and T2-weighted axial imaging, TOF, and MPRAGE sequences were obtained. Carotid plaques with high signal intensity on MPRAGE > 200% that of adjacent muscle on at least two consecutive slices were defined as showing IPH. Halo sign of high signal intensity around the carotid artery was found on MIP from TOF MRA. Continuous and categorical variables were compared among groups using the Mann-Whitney test and Fisher's exact tests. Results: Of these 78 carotid arteries, 53 appeared as a halo sign on the TOF MRA. The total IPH volume of patients with a positive halo sign was significantly higher than that of patients without a halo sign ($75.0{\pm}86.8$ vs. $16.3{\pm}18.2$, P = 0.001). The maximum IPH axial wall area in patients with a positive halo sign was significantly higher than that of patients without a halo sign ($11.3{\pm}9.9$ vs. $3.7{\pm}3.6$, P = 0.000). Conclusion: High signal intensity halo of IPH on MIP of TOF MRA is associated with total volume and maximal axial wall area of IPH.

Efficient and Robust Correspondence Detection between Unbalanced Stereo Images

  • Kim, Yong-Ho;Kim, Jong-Su;Lee, Sangkeun;Choi, Jong-Soo
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.161-170
    • /
    • 2012
  • This paper presents an efficient and robust approach for determining the correspondence between unbalanced stereo images. The disparity vectors were used instead of feature points, such as corners, to calculate a correspondence relationship. For a faster and optimal estimation, the vectors were classified into several regions, and the homography of each region was calculated using the RANSAC algorithm. The correspondence image was calculated from the images transformed by each homography. Although it provided good results under normal conditions, it was difficult to obtain reliable results in an unbalanced stereo pair. Therefore, a balancing method is also proposed to minimize the unbalance effects using the histogram specification and structural similarity index. The experimental results showed that the proposed approach outperformed the baseline algorithms with respect to the speed and peak-signal-to-noise ratio. This work can be applied to practical fields including 3D depth map acquisition, fast stereo coding, 2D-to-3D conversion, etc.

  • PDF

Fast and Efficient Method for Fire Detection Using Image Processing

  • Celik, Turgay
    • ETRI Journal
    • /
    • v.32 no.6
    • /
    • pp.881-890
    • /
    • 2010
  • Conventional fire detection systems use physical sensors to detect fire. Chemical properties of particles in the air are acquired by sensors and are used by conventional fire detection systems to raise an alarm. However, this can also cause false alarms; for example, a person smoking in a room may trigger a typical fire alarm system. In order to manage false alarms of conventional fire detection systems, a computer vision-based fire detection algorithm is proposed in this paper. The proposed fire detection algorithm consists of two main parts: fire color modeling and motion detection. The algorithm can be used in parallel with conventional fire detection systems to reduce false alarms. It can also be deployed as a stand-alone system to detect fire by using video frames acquired through a video acquisition device. A novel fire color model is developed in CIE $L^*a^*b^*$ color space to identify fire pixels. The proposed fire color model is tested with ten diverse video sequences including different types of fire. The experimental results are quite encouraging in terms of correctly classifying fire pixels according to color information only. The overall fire detection system's performance is tested over a benchmark fire video database, and its performance is compared with the state-of-the-art fire detection method.

3D Boundary Extraction of A Building Using Terrestrial Laser Scanner (지상라이다를 이용한 건축물의 3차원 경계 추출)

  • Lee, In-Su
    • Spatial Information Research
    • /
    • v.15 no.1
    • /
    • pp.53-65
    • /
    • 2007
  • Terrestrial laser scanner provides highly accurate, 3D images and by sweeping a laser beam over a scene or object, the laser scanner is able to record millions of 3D points' coordinates in a short period, so becoming distinguished in various application fields as one of the representative surveying instruments. This study deals with 3D building boundary extraction using Terrestrial Laser Scanner. The results shows that high accuracy 3D coordinates for building boundaries are possibly acquired fast, but terrestrial laser scanner is a ground-based system, so "no roofs", and "no lower part of building" due to trees and electric-poles, etc. It is expected that the combination of total station, terrestrial laser scanner, airborne laser scanner with aerial photogrammetry will contribute to the acquisition of an effective 3D spatial information.

  • PDF

A Flow Analysis Framework for Traffic Video

  • Bai, Lu-Shuang;Xia, Ying;Lee, Sang-Chul
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.45-53
    • /
    • 2009
  • The fast progress on multimedia data acquisition technologies has enabled collecting vast amount of videos in real time. Although the amount of information gathered from these videos could be high in terms of quantity and quality, the use of the collected data is very limited typically by human-centric monitoring systems. In this paper, we propose a framework for analyzing long traffic video using series of content-based analyses tools. Our framework suggests a method to integrate theses analyses tools to extract highly informative features specific to a traffic video analysis. Our analytical framework provides (1) re-sampling tools for efficient and precise analysis, (2) foreground extraction methods for unbiased traffic flow analysis, (3) frame property analyses tools using variety of frame characteristics including brightness, entropy, Harris corners, and variance of traffic flow, and (4) a visualization tool that summarizes the entire video sequence and automatically highlight a collection of frames based on some metrics defined by semi-automated or fully automated techniques. Based on the proposed framework, we developed an automated traffic flow analysis system, and in our experiments, we show results from two example traffic videos taken from different monitoring angles.

  • PDF

Road Centerline Tracking From High Resolution Satellite Imagery By Least Squares Templates Matching

  • Park, Seung-Ran;Kim, Tae-Jung;Jeong, Soo;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.34-39
    • /
    • 2002
  • Road information is very important for topographic mapping, transportation application, urban planning and other related application fields. Therefore, automatic detection of road networks from spatial imagery, such as aerial photos and satellite imagery can play a central role in road information acquisition. In this paper, we use least squares correlation matching alone for road center tracking and show that it works. We assumed that (bright) road centerlines would be visible in the image. We further assumed that within a same road segment, there would be only small differences in brightness values. This algorithm works by defining a template around a user-given input point, which shall lie on a road centerline, and then by matching the template against the image along the orientation of the road under consideration. Once matching succeeds, new match proceeds by shifting a matched target window further along road orientation at the target window. By repeating the process above, we obtain a series of points, which lie on a road centerline successively. A 1m resolution IKONOS images over Seoul and Daejeon were used for tests. The results showed that this algorithm could extract road centerlines in any orientation and help in fast and exact he ad-up digitization/vectorization of cartographic images.

  • PDF

An Efficient Algorithm for 3-D Range Measurement using Disparity of Stereoscopic Camera (스테레오 카메라의 양안 시차를 이용한 거리 계측의 고속 연산 알고리즘)

  • 김재한
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.6
    • /
    • pp.1163-1168
    • /
    • 2001
  • The ranging systems measure range data in three-dimensional coordinate from target surface. These non-contact remote ranging systems is widely used in various automation applications, including military equipment, construction field, navigation, inspection, assembly, and robot vision. The active ranging systems using time of flight technique or light pattern illumination technique are complex and expensive, the passive systems based on stereo or focusing principle are time-consuming. The proposed algorithm, that is based on cross correlation of projection profile of vertical edge, provides advantages of fast and simple operation in the range acquisition. The results of experiment show the effectiveness of the proposed algorithm.

  • PDF

The 3D Geometric Information Acquisition Algorithm using Virtual Plane Method (가상 평면 기법을 이용한 3차원 기하 정보 획득 알고리즘)

  • Park, Sang-Bum;Lee, Chan-Ho;Oh, Jong-Kyu;Lee, Sang-Hun;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.11
    • /
    • pp.1080-1087
    • /
    • 2009
  • This paper presents an algorithm to acquire 3D geometric information using a virtual plane method. The method to measure 3D information on the plane is easy, because it's not concerning value on the z-axis. A plane can be made by arbitrary three points in the 3D space, so the algorithm is able to make a number of virtual planes from feature points on the target object. In this case, these geometric relations between the origin of each virtual plane and the origin of the target object coordinates should be expressed as known homogeneous matrices. To include this idea, the algorithm could induce simple matrix formula which is only concerning unknown geometric relation between the origin of target object and the origin of camera coordinates. Therefore, it's more fast and simple than other methods. For achieving the proposed method, a regular pin-hole camera model and a perspective projection matrix which is defined by a geometric relation between each coordinate system is used. In the final part of this paper, we demonstrate the techniques for a variety of applications, including measurements in industrial parts and known patches images.