• Title/Summary/Keyword: farmland soils

Search Result 43, Processing Time 0.03 seconds

A Study on the Seepage Loss from Earth Canal (흙 수로에서 삼투손실에 관한 연구)

  • 박상현;김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.23 no.3
    • /
    • pp.88-95
    • /
    • 1981
  • This study was carried out to investigate the relation between seepage losses and flow section area in earth canals. Totally 77 seepage measurement was gained by ponded method and the tested canals belong to the irrigation area of Farmland Improvement Association in each province, Korea. The results obtained from this study may be used as a reasonable criteria for the estimation of canal seepage losses in the design of irrigation systems. Obtained results are summarized as follows: 1. Average seepage rates in each Soils is 14cm/day in ML, 6. 3cm/day in CL and 24.9 cm/day in SM. 2. Water depth and water surface width in eath canals have little influenced on the seepage rate, while the seepage losses was increased in proportion as the water surface width lengthens. 3. A formula of S=C.An defining a relationship between seepage losses and flow section was derieved as follows. ML:S=O. 35 VA 1.20 (m$^3$/day/m) CL:S=O. 13 VA 0.84 SM:s=O.67VA-1.56 4. The average seepage loss rates per 1km of canal are as followings. Measured Time ML CL SM 0-4 hrs 2.2% 0.6% 4.5% 4-2 4hrs 1.0% 0.15% 2.0% In above table we may obtain the following results. The first row is suitable for the canal having short delivery time of irrigation, while the second row for the canal having long delivery time.

  • PDF

Remediation Design Using Soil Washing and Soil Improvement Method for As Contaminated Soils and Stream Deposits Around an Abandoned Mine (토양 세척법과 석회를 첨가한 토양 안정화 공법을 이용한 폐광산 주변 비소 오염 토양 및 하천 퇴적토 복원)

  • 이민희;이정산;차종철;최정찬;이정민
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.121-131
    • /
    • 2004
  • Removal efficiencies of soil washing and soil improvement processes to remediate farmland soils and stream deposits around Goro abandoned mine were investigated with batch and column experiments. For As-contaminated farm-land soils around Goro mine, batch tests to quantify As extraction rate from contaminated soils and lime treated contaminated soils were performed. The contaminated soil mixed with lime decreased As extraction rate less than one fourth, suggesting that the soil improvement method mixed with lime dramatically decrease As extraction rate. A storage dam will be constructed in the lower part of the main stream connected to Goro abandoned mine and the amount of As extracted from the bottom soils of reservoir could be the main source to contaminate water of reservoir. The decrease of As extraction amount from the bottom in reservoir, caused by the application of the soil improvement method was investigated from the physically simulated column experiment and results showed that As extraction rate decreased to one forty when 1% lime mixed soil improvement was applied to contaminated soils. For contaminated stream deposits connected Goro mine, the removal efficiency of the soil washing method was investigated with batch experiments. Hydrochloric acid, citric acid, acetic acid and distilled water were used as soil washing solution and 0.01, 0.05, 0.1, 0.5, 1.0 N of washing solution were applied to extract As. When washing with 0.05 N of hydrochloric acid or citric acid, more than 99.9% of As was removed from stream deposits, suggesting that As contaminated stream deposits around Goro mine be successfully remediated with the soil washing process. Total volumes of contaminated soils and deposits needed for remediation were calculated based on three different reme-diation target concentrations and the operation cost of soil washing for calculated soil volumes was estimated. Results from this research could be directly used to make a comprehensive countermeasure to remediate contaminated area around Goro mine and also many contaminated areas similar to this research area.

Transfer of Arsenic from Paddy Soils to Rice Plant under Different Cover Soil Thickness in Soil Amendments in Abandoned Coal Mine (폐탄광지역 비소오염 농경지(논) 개량 시 복토두께에 따른 비소의 벼 전이 및 토양용액 특성)

  • Koh, Il-Ha;Kwon, Yo Seb;Jeong, Mun-Ho;Ko, Ju In;Bak, Gwan-In;Ji, Won Hyun
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.483-494
    • /
    • 2021
  • This study was carried out to investigate the feasibility of reducing clean cover soil using a flooded column test in arsenic-contaminated farmland reclamation of abandoned coal mine area that shows generally low or about worrisome level (25 mg/kg) of Korea soil environment conservation act unlike abandoned metal mine. During the monitoring period of soil solution for 4 months, chemical properties (pH, EC, ORP, Fe, Mn, Ca, and As) in each layer (clean soil cover and contaminated/stabilized soil) showed different variation. This result revealed that soil solution in stabilized or contaminated soil rarely affected that in cover soil. Whether stabilized or not, arsenic concentrations in the rice roots grown in the soil covers with the thickness of 40 cm decreased by 98% in compared with the that grown in the control soil. In case of the soil covers with 20 cm thickness on stabilized soil, it decreased by 80% and this was 22 percentage point higher than when the soil of lower layer was not stabilized. Thus, reducing clean cover soil could be possible in contaminated farmland soil reclamation if appropriate stabilization of contaminated soil is carried.

Study on the Growth of Soybean and Corn in Artificial Media (인공배지를 이용한 옥수수와 콩의 생육시험 연구)

  • Kim, Sun-Joo;Yoon, Chun-Gyeong;Kim, Hyung-Joong;Yang, Yong-Suck
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.234-241
    • /
    • 2000
  • For the recycling of sludge as soil conditioner, the firing technology in pottery industry was applied to the sludge treatment, and produced artificial media with many voids. To produce artificial media using sludge, chabazite and lime were used as additives, and the mixture of sludge and additives was thermally treated in the firing kiln at about $800{\sim}1,100^{\circ}C$ for about ten minutes. The effect of mixed artificial media into upland soil was investigated through the crop growth experiment and the physical & chemical characteristics of the mixed soils were analysed. The pH of artificial media was higher than that of the control soils. After the plant growth experiment, artificial media plots almost contained more CEC, OM, TN, TP and $AV.P_2O_5$ than upland soil plots. From the growth analysis, growth of soybean and corn in the artificial media plots was better than that in the original upland soil plots. The yield of soybean and corn in the artificial media plots were about 46kg/10a, 194kg/10a, respectively, which is higher than that in the control. Heavy metals in the artificial media plots were lower than the standard regulation. Therefore, the artificial media produced from sludge can be mixed into farmland, and crop production can be increased additionally.

  • PDF

Feasibility Study of the Stabilization for the Arsenic Contaminated Farmland Soil by Using Amendments at Samkwang Abandoned Mine (삼광광산 주변 비소 오염 토양에 대한 안정화 공법 적용성 평가)

  • Lee, Jung-Rak;Kim, Jae-Jung;Cho, Jin-Dong;Hwang, Jin-Yeon;Lee, Min-Hee
    • Economic and Environmental Geology
    • /
    • v.44 no.3
    • /
    • pp.217-228
    • /
    • 2011
  • The feasibility study for the stabilization process using 5 amendments was performed to quantify As-immobilization efficiency in farmland soils around Samkwang abandoned mine, Korea. For the batch experiments, with 2% and 3% of granular lime(2-5 mm in diameter), leaching concentration of As from the soil decreased by 86% and 95% respectively, compared to that without the amendment. When 5% and 10% of granular limestone was added in the soil, As concentration decreased by 82% and 95%, showing that lime and limestone has a great capability to immobilize As in the soil. From the results of batch experiments, continuous column(15 cm in dimeter and 100 cm in length) tests using granular lime and limestone as amendments was performed. Without the amendment, As concentration from the effluent of the column ranged from 167 ${\mu}g$/L to 845 ${\mu}g$/L, which were higher than Korea Drinking Water Limit(50 ${\mu}g$/L). However, only with 1% and 2% of lime, As concentration from the column dramatically decreased by 97% for 9 years rainfall and maintained below 50 ${\mu}g$/L. With 5% of limestone and the mixed amendment(1% of lime + 2% of limestone), more than 95% diminution of As leaching from the column occurred within I year rainfall and maintained below 20 ${\mu}g$/L, suggesting that the capability of limestone to immobilize As in the farmland soil was outstanding and similar to that of lime. Results of experiments suggested that As stabilization process using limestone could be more available to immobilize As from the soil than using lime because of low pH increase and thus less harmful side effect.

Human Risk Assessment of Toxic Heavy Metals Around Abandoned Metal Mine Sites (금속광산지역 독성 중금속원소들의 인체 위해성 평가)

  • 이진수;전효택
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.73-86
    • /
    • 2004
  • In order to estimate the post-ingestion bioavailability of heavy metals and to assess the risk of adverse health effects on human exposure to toxic heavy metals, environmental geochemical surveys were undertaken around the Dogok Au-Ag-Cu and the Hwacheon Au-Ag-Pb-Zn mine sites. Human risk assessment of toxic heavy metals was performed with the results of the SBET(simple bioavailability extraction test) analysis for soil and chemical analytical data for crop plant and water. Arsenic and other heavy metals were highly elevated in tailings from the Dogok(218 As mg/kg, 90.2 Cd mg/kg, 3,053 Cu mg/kg, 9,473 Pb mg/kg, 14,500 Zn mg/kg) and the Hwacheon(72 As mg/kg, 12.4 Cd mg/kg. 578 Pb mg/kg, 1,304 Zn mg/kg) mines. These significant concentrations can impact on soils and waters around the tailing dumps. The quantities of As, Cd and Zn extracted from paddy soils in the Hwacheon mine using the SBET analysis were 55.4%, 20.8% and 26.4% bioavailability, respectively, and for farmland soils in the Dogok mine, 40.8%, 37.6% and 33.0% bioavailability, respectively. From the results of human risk assessment, HI(Hazard Index) value exceeded 1.0 for As in the Hwacheon mine and for Cd in the Dogok mine. Thus, toxic risks for As and Cd exist via exposure(ingestion) of contaminated soil, water and rice grain in these mine sites. The cancer risk for As by the consumption of rice and groundwater in the Hwacheon mine area was 8E-4 and 1E-4, respectively. This risk level exceeds the acceptable risk(1 in 100,000) for regulatory purpose. Therefore, regular ingestion of locally grown rice and ground-water by the local population can pose a potential health threat due to long-term arsenic exposure.

Study for the Stabilization of Arsenic in the Farmland Soil by Using Steel Making Slag and Limestone (제강슬래그와 석회석을 이용한 비소오염 농경지 토양 안정화 연구)

  • Lee, Min-Hee;Jeon, Ji-Hye
    • Economic and Environmental Geology
    • /
    • v.43 no.4
    • /
    • pp.305-314
    • /
    • 2010
  • The stabilization process using limestone ($CaCO_3$) and steel making slag as the immobilization amendments was investigated for As contaminated farmland soils around Chonam abandoned mine, Korea. Batch and continuous column experiments were performed to quantify As-immobilization efficiency in soil and the analyses using XRD and SEM/EDS for secondary minerals precipitated in soil were also conducted to understand the mechanism of Asimmobilization by the amendments. For the batch experiment, with 3% of limestone and steel making slag, leaching concentration of As from the contaminated soil decreased by 62% and 52% respectively, compared to that without the amendment. When the mixed amendment (2% of limestone and 1% of steel making slag) was used, As concentration in the effluent solution decreased by 72%, showing that the mixed of limestone and steel making slag has a great capability to immobilize As in the soil. For the continuous column experiments without the amendment, As concentration from the effluent of the column ranged from 50 to $80\;{\mu}g/L$. However, with 2% limestone and 1% steel making slag, more than 80% diminution of As leaching concentration occurred within 1 year and maintained mostly below $10\;{\mu}g/L$. Results from XRD and SEM/EDS analysis for the secondary minerals created from the reaction of the amendments with $As^{+3}$ (arsenite) investigated that portlandite ($Ca(OH)_2$), calcium-arsenite (Ca-As-O) and calcite ($CaCO_3$) were main secondary minerals and the distinct As peaks in the EDS spectra of the secondary minerals can be observed. These findings suggest that the co-precipitation might be the major mechanisms to immobilize As in the soil medium with limestone and steel making slag.

Firing Conditions and Material Characteristics of Neolithic Potteries from the Goseong Munamri Sites, Korea (고성 문암리 출토 신석기 토기의 재질특성과 소성조건)

  • Kim, Su Kyoung;Jang, Sungyoon;Lee, Chan Hee
    • Economic and Environmental Geology
    • /
    • v.53 no.2
    • /
    • pp.197-212
    • /
    • 2020
  • This study was carried out material characteristics and firing conditions for some potteries in early and middle Neolithic period at the Munamri sites, where the first farmland remails were found in Korea. It is divided into six kinds of surface patterns for potteries such as the raised, bamboo tube and red painted (patternless) from the early Neolithic period (BC 4000 to 6000), and the patterns of horizontal herringbone, short slanted lined or lattice and incised thick line in the middle Neolithic period (BC 3000 to 4000), respectively. Based on the color measures, redness and yellowness of potteries were relatively high as condition of oxidation firings, were also observed black cores on the cross section of potteries. The firing temperature is divided into two groups having under 800℃ and 800to 900℃, the difference in patterns of the potteries are not confirmed. As a microtextures, the bamboo tube pattern potteries show the sericitization biotite, the quartz have developed a suture line textures, and altered alkali feldspars are occurred. X-ray diffraction analysis shows that the main minerals contained in potteries are chlorite and amphibole besides quartz, alkali feldspar and biotite. Considering the geology around the Munamri area is the biotite amphibole granite and soil layers within 10km radius are used as the raw materials for the potteries. The raw materials are presumed that the sources from the metamorphic rocks along the water systems through the mountains around the sites on the basis of well developed suture line textured quartz in potteries. Results on normalized geochemical compositions, the potteries by surface patterns are very similar to sources, and it is judged that was made by using the surrounding soils despite the long time difference from the early to middle in the Neolithic period.

Characteristics of Artificial Soils Produced from Sludge (슬러지를 이용하여 생산한 인공토양의 특성)

  • Yoon, Chun-Gyeong;Kim, Sun-Joo;Kwun, Tae-Young;Lee, Nam-Chool
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.3
    • /
    • pp.200-204
    • /
    • 1998
  • Physical and chemical properties of artificial soil produced by firing process were analyzed and compared with normal dry field soil and soil quality standards. Material used for production was water and wastewater treatment sludge, chabizite, and lime. The mixed material was thermally treated in the firing kiln at about $300^{\circ}C$ and $1,000^{\circ}C$, respectively, as per designed process. General properties of the artificial soil were classified as sand by unified soil classification method and similar to the dry-field soil, and even soil conditioning effect were expected when it is mixed properly with normal soil. The artificial soil is high in pH and permeability compared to the dry-field soil. Heavy metal concentrations of the artificial soil met the soil quality standards for the farmland. Overall, the artificial soil was thought to be an appropriate soil which can be returned safely to the nature without significant adverse effect. The cost for the artificial soil production process needs to be lowered for practical application as a sludge treatment, therefore, commercializing of the artificial soil is under review.

  • PDF

Transfer of Arsenic from Soilsto Rice Grains through Reducing the Thickness of Soil Covering in Soil Reclamation in an Abandoned Coal Mine Area (폐석탄광산 농경지(논) 토양개량복원 시 복토두께 조정에 따른 비소의 벼 전이효과 현장실증)

  • Il-Ha Koh;Yo Seb Kwon;Ju In Ko;Won Hyun Ji
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.3
    • /
    • pp.157-165
    • /
    • 2023
  • In Korea, a major contaminant of farmland soils in the vicinity of abandoned mines is arsenic, for which the general soil reclamation method is contaminated soil stabilization and cover the stabilized soil with clean soil at a thickness of 40 cm. In a previous pot experiment study we confirmed the feasibility of a lower thickness (20 cm) of covering soil for such reclamation in abandoned coal mines, where arsenic contamination levels are generally lower than in metal mines. In this subsequent study a field experiment including rice plant cultivation in field test plots was conducted. For over 4 months, the transfer of arsenic from the contaminated soil to the unpolished rice grains was reduced by 44% when a clean soil covering with a thickness of 20 cm was applied. The maximum decrease (56%) was shown when the stabilization process was performed before the covering. These results reveal a lower thickness of clean soil covering has a high feasibility and it can increase cost-efficiency in the reclamation of an abandoned coal mine.