• Title/Summary/Keyword: false-negative error

Search Result 46, Processing Time 0.023 seconds

An Adaptive Watermark Detection Algorithm for Vector Geographic Data

  • Wang, Yingying;Yang, Chengsong;Ren, Na;Zhu, Changqing;Rui, Ting;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.323-343
    • /
    • 2020
  • With the rapid development of computer and communication techniques, copyright protection of vector geographic data has attracted considerable research attention because of the high cost of such data. A novel adaptive watermark detection algorithm is proposed for vector geographic data that can be used to qualitatively analyze the robustness of watermarks against data addition attacks. First, a watermark was embedded into the vertex coordinates based on coordinate mapping and quantization. Second, the adaptive watermark detection model, which is capable of calculating the detection threshold, false positive error (FPE) and false negative error (FNE), was established, and the characteristics of the adaptive watermark detection algorithm were analyzed. Finally, experiments were conducted on several real-world vector maps to show the usability and robustness of the proposed algorithm.

Theoretical Considerations for the Agresti-Coull Type Confidence Interval in Misclassified Binary Data (오분류된 이진자료에서 Agresti-Coull유형의 신뢰구간에 대한 이론적 고찰)

  • Lee, Seung-Chun
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.4
    • /
    • pp.445-455
    • /
    • 2011
  • Although misclassified binary data occur frequently in practice, the statistical methodology available for the data is rather limited. In particular, the interval estimation of population proportion has relied on the classical Wald method. Recently, Lee and Choi (2009) developed a new confidence interval by applying the Agresti-Coull's approach and showed the efficiency of their proposed confidence interval numerically, but a theoretical justification has not been explored yet. Therefore, a Bayesian model for the misclassified binary data is developed to consider the Agresti-Coull confidence interval from a theoretical point of view. It is shown that the Agresti-Coull confidence interval is essentially a Bayesian confidence interval.

Delamination identification of laminated composite plates using measured mode shapes

  • Xu, Yongfeng;Chen, Da-Ming;Zhu, Weidong;Li, Guoyi;Chattopadhyay, Aditi
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.195-205
    • /
    • 2019
  • An accurate non-model-based method for delamination identification of laminated composite plates is proposed in this work. A weighted mode shape damage index is formulated using squared weighted difference between a measured mode shape of a composite plate with delamination and one from a polynomial that fits the measured mode shape of the composite plate with a proper order. Weighted mode shape damage indices associated with at least two measured mode shapes of the same mode are synthesized to formulate a synthetic mode shape damage index to exclude some false positive identification results due to measurement noise and error. An auxiliary mode shape damage index is proposed to further assist delamination identification, by which some false negative identification results can be excluded and edges of a delamination area can be accurately and completely identified. Both numerical and experimental examples are presented to investigate effectiveness of the proposed method, and it is shown that edges of a delamination area in composite plates can be accurately and completely identified when measured mode shapes are contaminated by measurement noise and error. In the experimental example, identification results of a composite plate with delamination from the proposed method are validated by its C-scan image.

Intrusion Detection Learning Algorithm using Adaptive Anomaly Detector (적응형 변형 인식부를 이용한 침입 탐지 학습알고리즘)

  • Sim, Kwee-Bo;Yang, Jae-Won;Kim, Young-Soo;Lee, Se-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.451-456
    • /
    • 2004
  • Signature based intrusion detection system (IDS), having stored rules for detecting intrusions at the library, judges whether new inputs are intrusion or not by matching them with the new inputs. However their policy has two restrictions generally. First, when they couldn't make rules against new intrusions, false negative (FN) errors may are taken place. Second, when they made a lot of rules for maintaining diversification, the amount of resources grows larger proportional to their amount. In this paper, we propose the learning algorithm which can evolve the competent of anomaly detectors having the ability to detect anomalous attacks by genetic algorithm. The anomaly detectors are the population be composed of by following the negative selection procedure of the biological immune system. To show the effectiveness of proposed system, we apply the learning algorithm to the artificial network environment, which is a computer security system.

Adaptive Intrusion Detection Algorithm based on Learning Algorithm (학습 알고리즘 기반의 적응형 침입 탐지 알고리즘)

  • Sim, Kwee-Bo;Yang, Jae-Won;Lee, Dong-Wook;Seo, Dong-Il;Choi, Yang-Seo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.75-81
    • /
    • 2004
  • Signature based intrusion detection system (IDS), having stored rules for detecting intrusions at the library, judges whether new inputs are intrusion or not by matching them with the new inputs. However their policy has two restrictions generally. First, when they couldn`t make rules against new intrusions, false negative (FN) errors may are taken place. Second, when they made a lot of rules for maintaining diversification, the amount of resources grows larger proportional to their amount. In this paper, we propose the learning algorithm which can evolve the competent of anomaly detectors having the ability to detect anomalous attacks by genetic algorithm. The anomaly detectors are the population be composed of by following the negative selection procedure of the biological immune system. To show the effectiveness of proposed system, we apply the learning algorithm to the artificial network environment, which is a computer security system.

A Recidivism Prediction Model Based on XGBoost Considering Asymmetric Error Costs (비대칭 오류 비용을 고려한 XGBoost 기반 재범 예측 모델)

  • Won, Ha-Ram;Shim, Jae-Seung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.127-137
    • /
    • 2019
  • Recidivism prediction has been a subject of constant research by experts since the early 1970s. But it has become more important as committed crimes by recidivist steadily increase. Especially, in the 1990s, after the US and Canada adopted the 'Recidivism Risk Assessment Report' as a decisive criterion during trial and parole screening, research on recidivism prediction became more active. And in the same period, empirical studies on 'Recidivism Factors' were started even at Korea. Even though most recidivism prediction studies have so far focused on factors of recidivism or the accuracy of recidivism prediction, it is important to minimize the prediction misclassification cost, because recidivism prediction has an asymmetric error cost structure. In general, the cost of misrecognizing people who do not cause recidivism to cause recidivism is lower than the cost of incorrectly classifying people who would cause recidivism. Because the former increases only the additional monitoring costs, while the latter increases the amount of social, and economic costs. Therefore, in this paper, we propose an XGBoost(eXtream Gradient Boosting; XGB) based recidivism prediction model considering asymmetric error cost. In the first step of the model, XGB, being recognized as high performance ensemble method in the field of data mining, was applied. And the results of XGB were compared with various prediction models such as LOGIT(logistic regression analysis), DT(decision trees), ANN(artificial neural networks), and SVM(support vector machines). In the next step, the threshold is optimized to minimize the total misclassification cost, which is the weighted average of FNE(False Negative Error) and FPE(False Positive Error). To verify the usefulness of the model, the model was applied to a real recidivism prediction dataset. As a result, it was confirmed that the XGB model not only showed better prediction accuracy than other prediction models but also reduced the cost of misclassification most effectively.

An Hybrid Probe Detection Model using FCM and Self-Adaptive Module (자가적응모듈과 퍼지인식도가 적용된 하이브리드 침입시도탐지모델)

  • Lee, Seyul
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.3
    • /
    • pp.19-25
    • /
    • 2017
  • Nowadays, networked computer systems play an increasingly important role in our society and its economy. They have become the targets of a wide array of malicious attacks that invariably turn into actual intrusions. This is the reason computer security has become an essential concern for network administrators. Recently, a number of Detection/Prevention System schemes have been proposed based on various technologies. However, the techniques, which have been applied in many systems, are useful only for the existing patterns of intrusion. Therefore, probe detection has become a major security protection technology to detection potential attacks. Probe detection needs to take into account a variety of factors ant the relationship between the various factors to reduce false negative & positive error. It is necessary to develop new technology of probe detection that can find new pattern of probe. In this paper, we propose an hybrid probe detection using Fuzzy Cognitive Map(FCM) and Self Adaptive Module(SAM) in dynamic environment such as Cloud and IoT. Also, in order to verify the proposed method, experiments about measuring detection rate in dynamic environments and possibility of countermeasure against intrusion were performed. From experimental results, decrease of false detection and the possibilities of countermeasures against intrusions were confirmed.

Improving Performance of Crimp Signal Analysis by Falling Edge Alignment and Parameter Error Estimation in CFM (CFM에서 하강 에지 정렬과 파라미터 에러 평가에 의한 크림프 시그널 분석 성능 향상)

  • Aurecianus, Steven;Kang, Taesam;Han, Chung Gwon;Park, Jungkeun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.686-692
    • /
    • 2016
  • A Crimp Force Monitor (CFM) is equipment for detecting crimp errors by analyzing crimp signals obtained from force and strain sensors. The analysis is commonly performed by aligning a measured crimp signal with a reference signal and comparing their difference. Current analysis methods often suffer from wrong alignments that result in false negative detections. This paper presents a new crimp signal analysis method in CFM. First, a falling edge alignment is proposed that matches falling edges of the measured and the reference signals by minimizing the absolute difference summation. Second, a signal parameter error is introduced to evaluate the crimp quality difference between the measured signal and the reference. For calculating the signal parameter error, part of a signal is identified and divided into several regions to maximize the signal parameter errors. Experiments showed that the proposed method can improve the signal alignment and accurately detect bad crimps especially with the strain sensor.

Image Forensic Decision Algorithm using Edge Energy Information of Forgery Image (위·변조 영상의 에지 에너지 정보를 이용한 영상 포렌식 판정 알고리즘)

  • Rhee, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.3
    • /
    • pp.75-81
    • /
    • 2014
  • In a distribution of the digital image, there is a serious problem that is distributed an illegal forgery image by pirates. For the problem solution, this paper proposes an image forensic decision algorithm using an edge energy information of forgery image. The algorithm uses SA (Streaking Artifacts) and SPAM (Subtractive Pixel Adjacency Matrix) to extract the edge energy informations of original image according to JPEG compression rate(QF=90, 70, 50 and 30) and the query image. And then it decides the forge whether or not by comparing the edge informations between the original and query image each other. According to each threshold in TCJCR (Threshold by Combination of JPEG Compression Ratios), the matching of the edge informations of original and query image is excused. Through the matching experiments, TP (True Positive) and FN (False Negative) is 87.2% and 13.8% respectively. Thus, the minimum average decision error is 0.1349. Also, it is confirmed that the performed class evaluation of the proposed algorithm is 'Excellent(A)' because of the AUROC (Area Under Receiver Operating Characteristic) curve is 0.9388 by sensitivity and 1-specificity.

Improvement and Evaluation of Automatic Quality Check Algorithm for Particulate Matter (PM10) by Analysis of Instrument Status Code (부유분진(PM10) 측정기 상태 코드 분석을 통한 자동 품질검사 알고리즘 개선 및 평가)

  • Kim, Mi-Gyeong;Park, Young-San;Ryoo, Sang-Boom;Cho, Jeong Hoon
    • Atmosphere
    • /
    • v.29 no.4
    • /
    • pp.501-509
    • /
    • 2019
  • Asian Dust is a meteorological phenomenon that sand particles are raised from the arid and semi-arid regions-Taklamakan Desert, Gobi Desert and Inner Mongolia in China-and transported by westerlies and deposited on the surface. Asian dust results in a negative effect on human health as well as environmental, social and economic aspects. For monitoring of Asian Dust, Korea Meteorological Administration operates 29 stations using a continuous ambient particulate monitor. Kim et al. (2016) developed an automatic quality check (AQC) algorithm for objective and systematic quality check of observed PM10 concentration and evaluated AQC with results of a manual quality check (MQC). The results showed the AQC algorithm could detect abnormal observations efficiently but it also presented a large number of false alarms which result from valid error check. To complement the deficiency of AQC and to develop an AQC system which can be applied in real-time, AQC has been modulated. Based on the analysis of instrument status codes, valid error check process was revised and 6 status codes were further considered as normal. Also, time continuity check and spike check were modified so that posterior data was not referred at inspection time. Two-year observed PM10 concentration data and corresponding MQC results were used to evaluate the modulated AQC compared to the original AQC algorithm. The results showed a false alarm ratio decreased from 0.44 to 0.09 and the accuracy and the probability of detection were conserved well in spite of the exclusion of posterior data at inspection time.