• 제목/요약/키워드: fall detection system

검색결과 108건 처리시간 0.023초

영상처리 기반 낙상 감지 알고리즘의 구현 (Implementation of fall-down detection algorithm based on Image Processing)

  • 김선기;안종수;김원호
    • 한국위성정보통신학회논문지
    • /
    • 제12권2호
    • /
    • pp.56-60
    • /
    • 2017
  • 본 논문은 영상처리 기반의 낙상 감지 알고리즘의 설계 및 구현에 관한 내용을 기술한다. 영상처리 기반의 낙상 감지 알고리즘은 카메라로 획득한 입력 영상을 그레이 스케일 변환 후 배경차분과 이진화를 통해 객체를 분리하고, 라벨링을 통해 인체를 인식한다. 인식된 인체는 출력 영상으로 확인이 가능하며 낙상을 감지하게 되면 알람이 발생한다. 컴퓨터 시뮬레이션을 통하여 제안한 알고리즘을 실험한 결과 90%의 검출율을 보여주었다. DSP 영상처리 보드에 구현한 시제품 시험을 통하여 기능을 검증함으로서 실용화 가능성을 확인하였다.

노인의 낙상 검출 시스템에 관한 연구 (A simulation on fall detection system for the elders)

  • 김동완;유종현;백승화
    • 전기전자학회논문지
    • /
    • 제17권1호
    • /
    • pp.22-28
    • /
    • 2013
  • 노인의 생활안전 사고 유형 중 가장 높은 비율을 차지하는 낙상은 50% 이상이 가정에서 발생하는 것으로 조사되었다. 또한 만 65세 이상 노인의 67.1%는 자녀와 동거를 희망하지 않으며 점점 더 독거노인의 비율은 늘어나, 낙상으로 인한 사고의 발생률은 더 높아질 것이다. 본 연구에서는 실내 바닥의 진동을 측정, 분석하여 낙상의 유무를 판별하고자 하였으며 이를 위해 피에조 필름 센서와 Op-Amp, DAQ를 이용하여 하드웨어를 구성하였다. 여기서 제안한 시스템은 바닥 진동을 측정할 수 있는 신호 처리부, 낙상 발생 시 사용자의 의식 확인을 위한 경보부로 구성하였다. 진동 신호는 k-NN분류기를 이용하여 낙상 유무를 판별한다. 실험결과, 분류기는 3.8%의 오차를 나타내어, 진동을 이용한 낙상 검출 가능성을 보여주고 있다.

CNN 기반의 인간형 로봇의 낙상 판별 모델 (CNN-based Fall Detection Model for Humanoid Robots)

  • 박신우;조현민
    • 센서학회지
    • /
    • 제33권1호
    • /
    • pp.18-23
    • /
    • 2024
  • Humanoid robots, designed to interact in human environments, require stable mobility to ensure safety. When a humanoid robot falls, it causes damage, breakdown, and potential harm to the robot. Therefore, fall detection is critical to preventing the robot from falling. Prevention of falling of a humanoid robot requires an operator controlling a crane. For efficient and safe walking control experiments, a system that can replace a crane operator is needed. To replace such a crane operator, it is essential to detect the falling conditions of humanoid robots. In this study, we propose falling detection methods using Convolution Neural Network (CNN) model. The image data of a humanoid robot are collected from various angles and environments. A large amount of data is collected by dividing video data into frames per second, and data augmentation techniques are used. The effectiveness of the proposed CNN model is verified by the experiments with the humanoid robot MAX-E1.

장단기 메모리 기반 노인 낙상감지에 대한 연구 (Study of fall detection for the elderly based on long short-term memory(LSTM))

  • 정승수;유윤섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.249-251
    • /
    • 2021
  • 본 논문에서는 노령층 인구가 도보시 일어날 수 있는 낙상상황을 텐서플로워를 이용하여 인지하기 위한 시스템에 대하여 소개한다. 낙상감지는 고령자의 몸에 착용한 가속센서 데이터에 대해서 텐서플로워를 이용하여 학습된 LSTM(long short-term memory)을 기반하여 낙상과 일상생활을 판별한다. 각각 7가지의 행동 패턴들에 대하여 학습을 실행하며, 4가지는 일상생활에서 일어나는 행동 패턴이고, 나머지 3가지는 낙상시의 패턴에 대하여 학습한다. 3축 가속도 센서의 가공하지 않은 데이터와 가공한 SVM(Sum Vector Magnitude)를 이용하여 LSTM에 적용해서 학습하였다. 이 두 가지 경우에 대해서 테스트한 결과 데이터를 혼합하여 학습하면 더 좋은 결과를 기대할 수 있을 것으로 예상된다.

  • PDF

임계값 기반 충격 전 낙상검출 및 실제 노인 데이터셋을 사용한 검증 (Threshold-based Pre-impact Fall Detection and its Validation Using the Real-world Elderly Dataset)

  • 김동권;이승희;구범모;양수민;김영호
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권6호
    • /
    • pp.384-391
    • /
    • 2023
  • Among the elderly, fatal injuries and deaths are significantly attributed to falls. Therefore, a pre-impact fall detection system is necessary for injury prevention. In this study, a robust threshold-based algorithm was proposed for pre-impact fall detection, reducing false positives in highly dynamic daily-living movements. The algorithm was validated using public datasets (KFall and FARSEEING) that include the real-world elderly fall. A 6-axis IMU sensor (Movella Dot, Movella, Netherlands) was attached to S2 of 20 healthy adults (aged 22.0±1.9years, height 164.9±5.9cm, weight 61.4±17.1kg) to measure 14 activities of daily living and 11 fall movements at a sampling frequency of 60Hz. A 5Hz low-pass filter was applied to the IMU data to remove high-frequency noise. Sum vector magnitude of acceleration and angular velocity, roll, pitch, and vertical velocity were extracted as feature vector. The proposed algorithm showed an accuracy 98.3%, a sensitivity 100%, a specificity 97.0%, and an average lead-time 311±99ms with our experimental data. When evaluated using the KFall public dataset, an accuracy in adult data improved to 99.5% compared to recent studies, and for the elderly data, a specificity of 100% was achieved. When evaluated using FARSEEING real-world elderly fall data without separate segmentation, it showed a sensitivity of 71.4% (5/7).

3축 가속도 센서를 이용한 낙상 검출 시스템 구현 (Implementation of Falls Detection System Using 3-axial Accelerometer Sensor)

  • 전아영;유주연;박근철;전계록
    • 한국산학기술학회논문지
    • /
    • 제11권5호
    • /
    • pp.1564-1572
    • /
    • 2010
  • 본 연구에서는 3축 가속도 신호를 이용하여 낙상과 낙상 방향을 검출하는 시스템을 구현하였다. 가속도 신호는 3축 가속도 센서로부터 획득하였으며, 획득된 신호를 USB 인터페이스를 통하여 PC에 전달하였다. PC에 전송된 신호를 제안한 알고리즘을 사용하여 낙상을 검출하였으며, 퍼지 분류기를 사용하여 낙상의 방향을 분류하였다. 실험을 위하여 실험대상군 6명 선정하였으며, 가슴에 가속도계를 부착한 후 실험을 수행하였다. 실험대상자는 5초 동안 정상 보행을 한 후 4 가지 방향(전 후 좌 우)으로 낙상이 발생하도록 하였으며, 낙상에 소요되는 시간은 최소 2초로 설정하였다. 본 연구에서 제안된 알고리즘을 이용하여 낙상을 검출하였으며 낙상 발생 후 1초부터 데이터를 분석하고 퍼지 분류기를 이용하여 낙상방향을 분류하였다. 낙상 검출율은 평균 94.79%이었다. 낙상 방향에 따른 분류율은 front_fall은 95.83%, back_fall은 100%, left_fall 은 87.5%, right_fall은 95.83%이었다.

딥러닝 기반 낙상 감지 시스템의 구성과 적용 (Configuration and Application of a deep learning-based fall detection system)

  • 우종석;리오넬;정상중;정완영
    • 융합신호처리학회논문지
    • /
    • 제24권4호
    • /
    • pp.213-220
    • /
    • 2023
  • 낙상은 일상의 활동 중에 예기치 않게 발생하여 생활에 많은 어려움을 초래한다. 본 연구는 고위험 직종 종사자들의 낙상 감지를 위한 시스템을 구성하고 자료를 수집하여 예측 모델에 적용함으로써 그 유효성을 검증하는 것을 목적으로 하였다. 이를 위해 가속도센서와 자이로센서를 통해 가속도 신호와 방위각을 산출하여 낙상 여부를 감지하는 웨어러블 기기를 구성하였다. 그리고 연구 참여자들이 이 기기를 복부에 착용하고 정해진 활동을 수행하는 과정에서 낙상과 관련한 동작으로부터 필요한 데이터를 측정하고 기기 내에 존재하는 블루투스 장치를 통해 컴퓨터로 전송하였다. 이렇게 수집된 데이터를 필터링 등을 통해 처리하여 딥러닝 알고리즘들인 1D CNN, LSTM, CNN-LSTM에 근거한 낙상 감지 예측 모델들에 적용하고 그 결과를 평가하였다.

자이로센서를 이용한 낙상 방향 탐지 시스템 구현 (Implementation of Fall Direction Detector using a Single Gyroscope)

  • 문병현;류정탁
    • 한국산업정보학회논문지
    • /
    • 제21권2호
    • /
    • pp.31-37
    • /
    • 2016
  • 낙상은 응급상황이 발생한 노인에게는 적절한 시간이 응급처치가 요구되는 주요한 상태이다. 응급상황의 경우, 낙상의 발생과 낙상 방향은 초기 상태의 응급처치를 위한 중요한 정보로 사용될 수 있다. 본 논문에서는 낙상의 발생과 방향을 정확히 판단하는 시스템을 구현하였다. 낙상과 방향을 감지하기 위하여 하나의 3축 자이로도센서(MPU-6050)를 사용하였다. 제안된 낙상 방향 알고리듬은 X와 Y축 가속도값을 사용하여 낙상여부와 앞, 뒤 좌,우 및 중간방향을 포함한 8개 낙상방향을 감지하였다. 제안된 시스템은 선택적인 가속도 임계값을 사용하여 97% 이상의 낙상과 낙상방향을 성공적으로 감지함을 보였다.

The design of the Fall detection algorithm using the smartphone accelerometer sensor

  • Lee, Daepyo;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • 제5권2호
    • /
    • pp.54-62
    • /
    • 2017
  • Currently, falling to industrial field workers is causing serious injuries. Therefore, many researchers are actively studying the fall by using acceleration sensor, gyro sensor, pressure sensor and image information.Also, as the spread of smartphones becomes common, techniques for determining the fall by using an acceleration sensor built in a smartphone are being studied. The proposed method has complexity due to fusion of various sensor data and it is still insufficient to develop practical application. Therefore, in this paper, we use acceleration sensor module built in smartphone to collect acceleration data, propose a simple falling algorithm based on accelerometer sensor data after normalization and preprocessing, and implement an Android based app.

3축 가속도 데이터를 이용한 장단기 메모리의 노드수에 따른 낙상감지 시스템 연구 (Study of Fall Detection System According to Number of Nodes of Hidden-Layer in Long Short-Term Memory Using 3-axis Acceleration Data)

  • 정승수;김남호;유윤섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2022년도 춘계학술대회
    • /
    • pp.516-518
    • /
    • 2022
  • 본 논문에서는 낙상상태를 감지할 수 있는 장단기 메모리(Long Short-Term Memory)를 이용한 낙상감지 시스템에서 은닉층 노드 수 변경에 따른 영향을 소개한다. 3축 가속도 센서를 이용하여 x, y, z축 데이터를 중력 방향과 이루는 각도를 나타내는 파라미터 theta(θ)를 이용하여 훈련을 진행한다. 학습에서는 validation이 진행되어 8:2의 비율로 훈련 데이터와 테스트 데이터로 나뉘며, 효율성을 높이기 위해 은닉층의 노드 수를 변화하며 훈련을 진행한다. 노드 수가 128일 때 Accuracy 99.82%, Specificity 99.58%, Sensitivity 100%로 가장 좋은 정확도를 나타내었다.

  • PDF