• Title/Summary/Keyword: fake news

Search Result 102, Processing Time 0.02 seconds

Fake News Detector using Machine Learning Algorithms

  • Diaa Salama;yomna Ibrahim;Radwa Mostafa;Abdelrahman Tolba;Mariam Khaled;John Gerges;Diaa Salama
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.195-201
    • /
    • 2024
  • With the Covid-19(Corona Virus) spread all around the world, people are using this propaganda and the desperate need of the citizens to know the news about this mysterious virus by spreading fake news. Some Countries arrested people who spread fake news about this, and others made them pay a fine. And since Social Media has become a significant source of news, .there is a profound need to detect these fake news. The main aim of this research is to develop a web-based model using a combination of machine learning algorithms to detect fake news. The proposed model includes an advanced framework to identify tweets with fake news using Context Analysis; We assumed that Natural Language Processing(NLP) wouldn't be enough alone to make context analysis as Tweets are usually short and do not follow even the most straightforward syntactic rules, so we used Tweets Features as several retweets, several likes and tweet-length we also added statistical credibility analysis for Twitter users. The proposed algorithms are tested on four different benchmark datasets. And Finally, to get the best accuracy, we combined two of the best algorithms used SVM ( which is widely accepted as baseline classifier, especially with binary classification problems ) and Naive Base.

CoAID+ : COVID-19 News Cascade Dataset for Social Context Based Fake News Detection (CoAID+ : 소셜 컨텍스트 기반 가짜뉴스 탐지를 위한 COVID-19 뉴스 파급 데이터)

  • Han, Soeun;Kang, Yoonsuk;Ko, Yunyong;Ahn, Jeewon;Kim, Yushim;Oh, Seongsoo;Park, Heejin;Kim, Sang-Wook
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.11 no.4
    • /
    • pp.149-156
    • /
    • 2022
  • In the current COVID-19 pandemic, fake news and misinformation related to COVID-19 have been causing serious confusion in our society. To accurately detect such fake news, social context-based methods have been widely studied in the literature. They detect fake news based on the social context that indicates how a news article is propagated over social media (e.g., Twitter). Most existing COVID-19 related datasets gathered for fake news detection, however, contain only the news content information, but not its social context information. In this case, the social context-based detection methods cannot be applied, which could be a big obstacle in the fake news detection research. To address this issue, in this work, we collect from Twitter the social context information based on CoAID, which is a COVID-19 news content dataset built for fake news detection, thereby building CoAID+ that includes both the news content information and its social context information. The CoAID+ dataset can be utilized in a variety of methods for social context-based fake news detection, thus would help revitalize the fake news detection research area. Finally, through a comprehensive analysis of the CoAID+ dataset in various perspectives, we present some interesting features capable of differentiating real and fake news.

FAGON: Fake News Detection Model Using Grammatical Transformation on Deep Neural Network

  • Seo, Youngkyung;Han, Seong-Soo;Jeon, You-Boo;Jeong, Chang-Sung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.10
    • /
    • pp.4958-4970
    • /
    • 2019
  • As technology advances, the amount of fake news is increasing more and more by various reasons such as political issues and advertisement exaggeration. However, there have been very few research works on fake news detection, especially which uses grammatical transformation on deep neural network. In this paper, we shall present a new Fake News Detection Model, called FAGON(Fake news detection model using Grammatical transformation On deep Neural network) which determines efficiently if the proposition is true or not for the given article by learning grammatical transformation on neural network. Especially, our model focuses the Korean language. It consists of two modules: sentence generator and classification. The former generates multiple sentences which have the same meaning as the proposition, but with different grammar by training the grammatical transformation. The latter classifies the proposition as true or false by training with vectors generated from each sentence of the article and the multiple sentences obtained from the former model respectively. We shall show that our model is designed to detect fake news effectively by exploiting various grammatical transformation and proper classification structure.

The Effect of the Fake News Related to the Electronic Voting System each News Service on News Users' Attitude of Using System, Intention to Participate through System and Reliability of News Services (뉴스서비스별 전자투표시스템 관련 가짜뉴스가 뉴스 이용자의 이용 태도, 선거 참여 의도, 뉴스서비스 신뢰도에 미치는 영향)

  • Jin, So-Yeon;Lee, Ji-Eun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.105-118
    • /
    • 2021
  • This study pays attention to the fact that the fake news is attracting attention because it causes various social problems. To find out these fake news' influence, the study conducted the experiment to examine that the fake news related to the electronic voting system affects on the news users' attitude of using the system, intention to participate in the election through the system and reliability of news services. The results have shown that the fake news framed with negative contents reduced users' attitude of using the system and intention of participation in the election. Especially, as a result of examining the difference in the fake news' influence according to each news services, in the case that users recognized that the news was fake after exposing to the general internet news, the attitude of using the system and the intention of participation in the election have reduced and recovered again. However, users who exposed to Naver, Facebook believed the negative content of the fake news more strongly. Through these results, this study empirically confirmed that the fake news has a tendency to exert influence on users' cognitive dimension and to reinforce awareness in a direction consistent with the initial exposure information.

COVID-19-related Korean Fake News Detection Using Occurrence Frequencies of Parts of Speech (품사별 출현 빈도를 활용한 코로나19 관련 한국어 가짜뉴스 탐지)

  • Jihyeok Kim;Hyunchul Ahn
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.267-283
    • /
    • 2023
  • The COVID-19 pandemic, which began in December 2019 and continues to this day, has left the public needing information to help them cope with the pandemic. However, COVID-19-related fake news on social media seriously threatens the public's health. In particular, if fake news related to COVID-19 is massively spread with similar content, the time required for verification to determine whether it is genuine or fake will be prolonged, posing a severe threat to our society. In response, academics have been actively researching intelligent models that can quickly detect COVID-19-related fake news. Still, the data used in most of the existing studies are in English, and studies on Korean fake news detection are scarce. In this study, we collect data on COVID-19-related fake news written in Korean that is spread on social media and propose an intelligent fake news detection model using it. The proposed model utilizes the frequency information of parts of speech, one of the linguistic characteristics, to improve the prediction performance of the fake news detection model based on Doc2Vec, a document embedding technique mainly used in prior studies. The empirical analysis shows that the proposed model can more accurately identify Korean COVID-19-related fake news by increasing the recall and F1 score compared to the comparison model.

Identification Systems of Fake News Contents on Artificial Intelligence & Bigdata

  • KANG, Jangmook;LEE, Sangwon
    • International journal of advanced smart convergence
    • /
    • v.10 no.3
    • /
    • pp.122-130
    • /
    • 2021
  • This study is about an Artificial Intelligence-based fake news identification system and its methods to determine the authenticity of content distributed over the Internet. Among the news we encounter is news that an individual or organization intentionally writes something that is not true to achieve a particular purpose, so-called fake news. In this study, we intend to design a system that uses Artificial Intelligence techniques to identify fake content that exists within the news. The proposed identification model will propose a method of extracting multiple unit factors from the target content. Through this, attempts will be made to classify unit factors into different types. In addition, the design of the preprocessing process will be carried out to parse only the necessary information by analyzing the unit factor. Based on these results, we will design the part where the unit fact is analyzed using the deep learning prediction model as a predetermined unit. The model will also include a design for a database that determines the degree of fake news in the target content and stores the information in the identified unit factor through the analyzed unit factor.

A Study on the Design of a Fake News Management Platform Based on Citizen Science (시민과학 기반 가짜뉴스 관리 플랫폼 연구)

  • KIM, Ji Yeon;SHIM, Jae Chul;KIM, Gyu Tae;KIM, Yoo Hyang
    • Journal of Science and Technology Studies
    • /
    • v.20 no.1
    • /
    • pp.39-85
    • /
    • 2020
  • With the development of information technology, fake news is becoming a serious social problem. Individual measures to manage the problem, such as fact-checking by the media, legal regulation, or technical solutions, have not been successful. The flood of fake news has undermined not only trust in the media but also the general credibility of social institutions, and is even threatening the foundations of democracy. This is why one cannot leave fake news unchecked, though it is certainly a difficult task to accomplish. The problem of fake news is not about simply judging its veracity, as no news is completely fake or unquestionably real and there is much uncertainty. Therefore, managing fake news does not mean removing them completely. Nor can the problem be left to individuals' capacity for rational judgment. Recurring fake news can easily disrupt individual decision making, which raises the need for socio-technical measures and multidisciplinary collaboration. In this study, we introduce a new public online platform for fake news management, which incorporates a multidimensional and multidisciplinary approach based on citizen science. Our proposed platform will fundamentally redesign the existing process for collecting and analyzing fake news and engaging with user reactions. People in various fields would be able to participate in and contribute to this platform by mobilizing their own expertise and capability.

Fake News Detection Using Deep Learning

  • Lee, Dong-Ho;Kim, Yu-Ri;Kim, Hyeong-Jun;Park, Seung-Myun;Yang, Yu-Jun
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1119-1130
    • /
    • 2019
  • With the wide spread of Social Network Services (SNS), fake news-which is a way of disguising false information as legitimate media-has become a big social issue. This paper proposes a deep learning architecture for detecting fake news that is written in Korean. Previous works proposed appropriate fake news detection models for English, but Korean has two issues that cannot apply existing models: Korean can be expressed in shorter sentences than English even with the same meaning; therefore, it is difficult to operate a deep neural network because of the feature scarcity for deep learning. Difficulty in semantic analysis due to morpheme ambiguity. We worked to resolve these issues by implementing a system using various convolutional neural network-based deep learning architectures and "Fasttext" which is a word-embedding model learned by syllable unit. After training and testing its implementation, we could achieve meaningful accuracy for classification of the body and context discrepancies, but the accuracy was low for classification of the headline and body discrepancies.

A Comparative Study of Text analysis and Network embedding Methods for Effective Fake News Detection (효과적인 가짜 뉴스 탐지를 위한 텍스트 분석과 네트워크 임베딩 방법의 비교 연구)

  • Park, Sung Soo;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.5
    • /
    • pp.137-143
    • /
    • 2019
  • Fake news is a form of misinformation that has the advantage of rapid spreading of information on media platforms that users interact with, such as social media. There has been a lot of social problems due to the recent increase in fake news. In this paper, we propose a method to detect such false news. Previous research on fake news detection mainly focused on text analysis. This research focuses on a network where social media news spreads, generates qualities with DeepWalk, a network embedding method, and classifies fake news using logistic regression analysis. We conducted an experiment on fake news detection using 211 news on the Internet and 1.2 million news diffusion network data. The results show that the accuracy of false network detection using network embedding is 10.6% higher than that of text analysis. In addition, fake news detection, which combines text analysis and network embedding, does not show an increase in accuracy over network embedding. The results of this study can be effectively applied to the detection of fake news that organizations spread online.

A Study on the Factors Affecting the Intention of Chinese Users to Discriminate Against Fake News on Social Media - Focusing on attitude, social capital, and risk detection - (중국 이용자 소셜미디어 가짜뉴스 판별의도에 미치는 요인에 관한 연구 -태도, 사회자본, 위험감지를 중심으로-)

  • Tan, KeHong;Lee, Hwa Haeng
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.4
    • /
    • pp.337-351
    • /
    • 2022
  • With the full spread and rapid development of social media, the trend of decentralization of social media information propagation is becoming clearer day by day, and the segmentation of time by audiences using social media information is clearly progressing. Therefore, this study aims to study the influence relationship between social media attitudes toward fake news, social capital, risk perception, and discriminant intentions based on existing studies. Accordingly, the research model presented related research questions and organized a questionnaire to collect a total of 500 valid surveys. The SPSS 26.0 program and the AMOS 24.0 program were used to analyze the data. The research results are as follows. First, the more positive the user's attitude towards the fake news identification intention of social media, the more they want to use various methods or tools to identify the authenticity of online information. Second, the more positive the user's attitude towards social media fake news, the more aware of the potential threats social media fake news poses to their own physical, psychological, financial and so on. At the same time, by raising one's own awareness of the dangers, counterintelligence intentions against fake news on social media will also increase. Third, the richer the social capital the user has, the stronger the information literacy, and therefore the stronger the identification intention of social media fake news. Fourth, the higher the value of social capital Chinese users have, the greater the damage they have suffered from fake news, and the higher the risk awareness of fake news to protect their interests. Fifth, it means that Chinese users recognized information suspected of social media and took corresponding measures.