• Title/Summary/Keyword: failure zone

Search Result 577, Processing Time 0.032 seconds

Development of 3D Impulse Calculation Technique for Falling Down of Trees (수목 도복의 3D 충격량 산출 기법 개발)

  • Kim, Chae-Won;Kim, Choong-Sik
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.1-11
    • /
    • 2023
  • This study intended to develop a technique for quantitatively and 3-dimensionally predicting the potential failure zone and impulse that may occur when trees are fall down. The main outcomes of this study are as follows. First, this study established the potential failure zone and impulse calculation formula in order to quantitatively calculate the risks generated when trees are fallen down. When estimating the potential failure zone, the calculation was performed by magnifying the height of trees by 1.5 times, reflecting the likelihood of trees falling down and slipping. With regard to the slope of a tree, the range of 360° centered on the root collar was set in the case of trees that grow upright and the range of 180° from the inclined direction was set in the case of trees that grow inclined. The angular momentum was calculated by reflecting the rotational motion from the root collar when the trees fell down, and the impulse was calculated by converting it into the linear momentum. Second, the program to calculate a potential failure zone and impulse was developed using Rhino3D and Grasshopper. This study created the 3-dimensional models of the shapes for topography, buildings, and trees using the Rhino3D, thereby connecting them to Grasshopper to construct the spatial information. The algorithm was programmed using the calculation formula in the stage of risk calculation. This calculation considered the information on the trees' growth such as the height, inclination, and weight of trees and the surrounding environment including adjacent trees, damage targets, and analysis ranges. In the stage of risk inquiry, the calculation results were visualized into a three-dimensional model by summarizing them. For instance, the risk degrees were classified into various colors to efficiently determine the dangerous trees and dangerous areas.

Rock bridge fracture model and stability analysis of surrounding rock in underground cavern group

  • Yu, Song;Zhu, Wei-Shen;Yang, Wei-Min;Zhang, Dun-Fu;Ma, Qing-Song
    • Structural Engineering and Mechanics
    • /
    • v.53 no.3
    • /
    • pp.481-495
    • /
    • 2015
  • Many hydropower stations in southwest China are located in regions of brittle rock mass with high geo-stresses. Under these conditions deep fractured zones often occur in the sidewalls of the underground caverns of a power station. The theory and methods of fracture and damage mechanics are therefore adopted to study the phenomena. First a flexibility matrix is developed to describe initial geometric imperfections of a jointed rock mass. This model takes into account the area and orientation of the fractured surfaces of multiple joint sets, as well as spacing and density of joints. Using the assumption of the equivalent strain principle, a damage constitutive model is established based on the brittle fracture criterion. In addition the theory of fracture mechanics is applied to analyze the occurrence of secondary cracks during a cavern excavation. The failure criterion, for rock bridge coalescence and the damage evolution equation, has been derived and a new sub-program integrated into the FLAC-3D software. The model has then been applied to the stability analysis of an underground cavern group of a hydropower station in Sichuan province, China. The results of this method are compared with those obtained by using a conventional elasto-plastic model and splitting depth calculated by the splitting failure criterion proposed in a previous study. The results are also compared with the depth of the relaxation and fracture zone in the surrounding rock measured by field monitoring. The distribution of the splitting zone obtained both by the proposed model and by the field monitoring measurements are consistent to the validity of the theory developed herein.

Slope Stability Analysis of Unsaturated Soil Slopes Due to Rainfall Infiltration (강우침투에 따른 불포화 토사사면의 안정해석)

  • 조성은;이승래
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.51-64
    • /
    • 2000
  • This paper presents a procedure of calculating a safety factor of the unsaturated slope suffering from the rainfall infiltration. The process of infiltration into a slope due to rainfall and its effect on the behavior of the soil slope are examined by using a two dimensional finite element flow-deformation coupled analysis. A factor of safety is calculated at various elapsed times after the commencement of rainfall as in the following procedure. First, stresses are estimated at each Gaussian point from the coupled finite element analysis. Then, the global stress smoothing method is applied to get a continuous stress field. Based on this stress field, a factor of safety is calculated for a specified slip surface by a stress integration scheme. Then, a search strategy is used to find out a critical slip surface which is associated with the minimum factor of safety. Some numerical examples are analyzed in order to study the effect of hydraulic conductivity on the slope stability during rain-induced infiltration. According to the results, local failure zone can be formed near the slope surface due to inhomogeneous distribution of hydraulic conductivity If the failure zone is once formed, then the region extends until a large amount of slide activates. Therefore the local failure can be neglected no longer in the stability analysis.

  • PDF

Structural Integrity Evaluation of Reactor Pressure Vessel Bottom Head without Penetration Nozzles in Core Melting Accident (노심용융사고 시 관통노즐이 제거된 원자로용기 하부헤드의 구조 건전성 평가)

  • Lee, Yun Joo;Kim, Jong Min;Kim, Hyun Min;Lee, Dae Hee;Chung, Chang Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.191-198
    • /
    • 2014
  • In this paper, structural integrity evaluation of reactor pressure vessel bottom head without penetration nozzles in core melting accident has been performed. Considering the analysis results of thermal load, weight of molten core debris and internal pressure, thermal load is the most significant factor in reactor vessel bottom head. The failure probability was evaluated according to the established failure criteria and the evaluation showed that the equivalent plastic strain results are lower than critical strain failure criteria. Thermal-structural coupled analyses show that the existence of elastic zone with a lower stress than yield strength is in the middle of bottom head thickness. As a result of analysis, the elastic zone became narrow and moved to the internal wall as the internal pressure increases, and it is evaluated that the structural integrity of reactor vessel is maintained under core melting accident.

Study on PWHT embrittlement of weld HAZ in Cr-Mo steel (Cr-Mo 鋼 溶接熱影響部의 溶接後熱處理 脆化에 관한 硏究)

  • 임재규;정세희
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.314-321
    • /
    • 1987
  • Post weld heat treatment (PWHT) of weldment of the low alloy Cr-Mo steel, in general, is carried out not only to remove residual stress and hydrogen existing in weldment but to improve fracture toughness of weld heat affected zone (HAZ). There occur some problems such as toughness decrement and stress relief cracking (SRC) in the coarse grained region of weld HAZ when PWHT is practiced. Especially, embrittlement of structure directly relates to the mode of fracture and is appeared as the difference of fracture surface such as grain boundary failure. Therefore, in this paper, the effect of heating rate on PWHT embrittlement under the various kinds of stresses simulated residual stress in weld HAZ was evaluated by COD fracture toughness test and observation of fracture surface. Fracture toughness of weld HAZ decreased with increment of heating rate under no stress, but it was improved to increment of heating rate under the stress. Grain boundary failure didn't almost appear at the heating rate of 600.deg.C/hr but it appeared from being the applied stress of 294 MPa at 220.deg.C/hr and 196 MPa at 60.deg.C/hr.

Experimental study on propagation behavior of three-dimensional cracks influenced by intermediate principal stress

  • Sun, Xi Z.;Shen, B.;Zhang, Bao L.
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.195-202
    • /
    • 2018
  • Many laboratory experiments on crack propagation under uniaxial loading and biaxial loading have been conducted in the past using transparent materials such as resin, polymethyl methacrylate (PMMA), etc. However, propagation behaviors of three-dimensional (3D) cracks in rock or rock-like materials under tri-axial loading are often considerably different. In this study, a series of true tri-axial loading tests on the rock-like material with two semi-ellipse pre-existing cracks were performed in laboratory to investigate the acoustic emission (AE) characteristics and propagation characteristics of 3D crack groups influenced by intermediate principal stress. Compared with previous experiments under uniaxial loading and biaxial loading, the tests under true tri-axial loading showed that shear cracks, anti-wing cracks and secondary cracks were the main failure mechanisms, and the initiation and propagation of tensile cracks were limited. Shear cracks propagated in the direction parallel to pre-existing crack plane. With the increase of intermediate principal stress, the critical stress of crack initiation increased gradually, and secondary shear cracks may no longer coalesce in the rock bridge. Crack aperture decreased with the increase of intermediate principal stress, and the failure is dominated by shear fracturing. There are two stages of fracture development: stable propagation stage and unstable failure stage. The AE events occurred in a zone parallel to pre-existing crack plane, and the AE zone increased gradually with the increase of intermediate principal stress, eventually forming obvious shear rupture planes. This shows that shear cracks initiated and propagated in the pre-existing crack direction, forming a shear rupture plane inside the specimens. The paths of fracturing inside the specimens were observed using the Computerized Tomography (CT) scanning and reconstruction.

Experimental and numerical study on mechanical behavior of RC shear walls with precast steel-concrete composite module in nuclear power plant

  • Haitao Xu;Jinbin Xu;Zhanfa Dong;Zhixin Ding;Mingxin Bai;Xiaodong Du;Dayang Wang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2352-2366
    • /
    • 2024
  • Reinforced concrete (RC) shear walls with precast steel-concrete composite modular (PSCCM) are strongly recommended in the structural design of nuclear power plants due to the need for a large number of process pipeline crossings and industrial construction. However, the effect of the PSCCM on the mechanical behavior of the whole RC shear wall is still unknown and has received little attention. In this study, three 1:3 scaled specimens, one traditional shear wall specimen (TW) and two shear wall specimens with the PSCCM (PW1, PW2), were designed and investigated under cyclic loadings. The failure mode, hysteretic curve, energy dissipation, stiffness and strength degradations were then comparatively investigated to reveal the effect of the PSCCM. Furthermore, numerical models of the RC shear wall with different PSCCM distributions were analyzed. The results show that the shear wall with the PSCCM has comparable mechanical properties with the traditional shear wall, which can be further improved by adding reinforced concrete constraints on both sides of the shear wall. The accumulated energy dissipation of the PW2 is higher than that of the TW and PW1 by 98.7 % and 60.0 %. The failure of the shear wall with the PSCCM is mainly concentrated in the reinforced concrete wall below the PSCCM, while the PSCCM maintains an elastic working state as a whole. Shear walls with the PSCCM arranged in the high stress zone will have a higher load-bearing capacity and lateral stiffness, but will suffer a higher risk of failure. The PSCCM in the low stress zone is always in an elastic working state.

Case Study on the Causes for the Failure of Large Scale Rock Mass Slope Composed of Metasedimentary Rocks (변성퇴적암류로 구성된 대규모 암반사면의 붕괴원인 분석에 관한 사례 연구)

  • Park, Boo-Seong;Jo, Hyun;Cha, Seung-Hun;Lee, Ki-Hwan
    • Tunnel and Underground Space
    • /
    • v.16 no.6 s.65
    • /
    • pp.506-525
    • /
    • 2006
  • For the design of large scale rock slope which has complex formations and geological structures, generally, insufficiency of geotechnical investigations and laboratory tests are the main factors of slope failures doling construction. In such case, remedial measures to stabilize slope should be selected and applied through reliable investigations and analysis considering the geotechnical characteristics. The rock slope of this study, one of the largest cut slopes in Korea with a length of 520.0 m and maximum height of 122.0 m consists of metasedimentary rocks. And a case study on the causes of large-scale rock slope failure was carried out by analysis of landslides history and site investigations during construction. When the slope with the original design slope of 0.7: 1.0 (H:V) was partially constructed, the slope failure was occurred due to the factors such as poor conditions of rocks (weathered zone, coaly shale and fault shear zone), various discontinuities (joints, foliations and faults), severe rain storm and so on. The types of failures were rockfall, circular failure, wedge failure and the combination of these types. So, the design of slope was changed three times to ensure long-term slope stability. This paper is intended to be a useful reference for analyzing and estimating the stability of rock slopes whose site conditions are similar to those of this study site such as geological structures and geotechnical properties.

A Study on the Failure Cause of Large Scale Rock Slope in Limestone Quarries (석회석 광산에서 발생한 대규모 암반사면의 붕괴원인 분석에 관한 연구)

  • Lee, Sang-Eun;Kim, Hak-Sung;Jang, Yoon-Ho
    • Tunnel and Underground Space
    • /
    • v.24 no.4
    • /
    • pp.255-274
    • /
    • 2014
  • The target of this study is large scale rock slope collapsed by around 7 pm on August, 2012, which is located at ${\bigcirc}{\bigcirc}$ limestone quarries of Gangneung city, Gangwondo. The slope prior to the collapse is formed as the height of about 200 m and the average inclination of $45^{\circ}$. The estimated amount of the collapse is about $1,500,000m^3$ with respect to the slope after the collapse. Geotechnical and field investigations such as boring, geophysical prospecting, surface geological survey, geological lineaments, borehole imaging, metric 3D imaging, experimental and field test, mining work by year, and daily rainfall were performed to find the cause of rock slope failure. Various analyzes using slope mass rating, stereonet projection, limit equilibrium method, continuum and non-continuum model were conducted to check of the stability of the slope. It is expected that the cause of slope failure from the results of various analysis and survey is due to the combined factors such as topography, rainfall, rock type and quality, discontinuities, geo-structural characteristics as the limestone cavity and fault zones, but the failure of slope in case of the analysis without the limestone cavity is not occurred. Safe factor of 0.66 was obtained from continuum analysis of the slope considering the limestone cavity, so the ultimate causes of slope failure is considered to be due to the influence of limestone cavity developed along fault zone.

Estimation of Safety Zone of Tunnel due to Adjacent Structure (근접구조물에 의한 터널의 안전영역 평가)

  • Hwang, Taikjean
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.3052-3060
    • /
    • 2013
  • When planning to construct adjacent structure by the side tunnel, the criteria of safety zone of tunnel have been proposed. There are no specific theoretical basis regarding load conditions and the distance of structure and the geological strata and the conditions of adjacent structure's location, and the conditions applied load. Two and three dimensional numerical analysis preformed to prove the deformation of the ground and structures caused by the tunnel excavation and evaluated the correlation and the suitability of the tunnel's safety zone regarding the location of adjacent structures and the changes in the modulus of deformation. This paper proposed the safety zone's range is getting bigger as the modulus of deformation is higher. Also, it seems that the possible range of construction under constraints in the diagram of revalued safety zone significantly expands as shear failure line appears on the invert extension line below the spring line.