• Title/Summary/Keyword: failure temperature

Search Result 1,326, Processing Time 0.029 seconds

Infrared Thermographic Monitoring for Failure Characterization in Railway Axle Materials (철도차량 차축 재료의 파괴특성 적외선열화상 모니터링)

  • Kim, Jeong-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.116-120
    • /
    • 2010
  • The wheelset, an assembly of wheel and axle, is one of important parts in railway bogie, directly related with the running safety of railway rolling stock. In this investigation, the tensile failure behavior of railway axle materials was investigated. The tensile coupons were prepared from the actual rolling stock parts, which were operated over 20 years. The tensile testing was performed according to the KS guideline. During tensile testing, an infrared camera was employed to monitor temperature changes in specimen as well as demonstrate temperature contour in terms of infrared thermographic images. The thermographic images of tensile specimens showed comparable results with mechanical behavior of tensile materials. In this paper, the failure mode and behavior of railway axle materials were provided with the aid of infrared thermography technique.

Thermal Reliability Analysis of BLDC Motor in a High Speed Axial Fan by the Accelerated Life Test (가속수명시험에 의한 고속팬용 밀폐구조형 BLDC 모터의 열신뢰성 분석)

  • Lee Tae-Gu;Moon Jong-Sun;Yoo Hoseon;Lee Jae-Heon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1169-1176
    • /
    • 2005
  • In this paper, thermal reliability of a closed type BLDC (Brushless DC) motor for high speed axial fan was analyzed by the accelerated life test. The closed type BLDC (Model No. MB1-8855-J01) motor was controlled by PCB module, which was composed of various electrical components. The failure of the closed type BLDC motor happened in PCB module due to high temperature. Failure mechanism of the closed type BLDC motor appears to be electrolyte dry out of capacitor. The accelerate life test was performed in temperature stress of $85^{\circ}C\;and\;105^{\circ}C$, respectively The failure data from the accelerated life test were analyzed and the life in each stress level was estimated with 960h and 261 h. At last, both life expression according to operating temperature of PCB module and life of the closed type BLBC motor in normal condition $(50^{\circ}C)$ were suggested.

Difference of Potential Range Formed at the Anode Between Water Drop Test and Temperature Humidity Bias Test to Evaluate Electrochemical Migration of Solders for Printed Circuit Board

  • Young Ran Yoo;Young Sik Kim
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.153-163
    • /
    • 2023
  • Two types of accelerated tests, Water Drop Test (WDT) and Temperature-Humidity-Bias Test (THBT), can be used to evaluate the susceptibility to electrochemical migration (ECM). In the WDT, liquid water is directly applied to a specimen, typically a patterned conductor like a printed circuit board. Time to failure in the WDT typically ranges from several seconds to several minutes. On the other hand, the THBT is conducted under elevated temperature and humidity conditions, allowing for assessment of design and life cycle factors on ECM. THBT is widely recognized as a more suitable method for reliability testing than WDT. In both test methods, localized corrosion can be observed on the anode. Composition of dendrites formed during the WDT is similar to that formed during THBT. However, there is a lack of correlation between the time to failure obtained from WDT and that obtained from THBT. In this study, we investigated the relationship between electrochemical parameters and time to failure obtained from both WDT and THBT. Differences in time to failure can be attributed to actual anode potential obtained in the two tests.

Low-velocity impact performance of the carbon/epoxy plates exposed to the cyclic temperature

  • Fathollah Taheri-Behrooz;Mahdi Torabi
    • Steel and Composite Structures
    • /
    • v.48 no.3
    • /
    • pp.305-320
    • /
    • 2023
  • The mechanical properties of polymeric composites are degraded under elevated temperatures due to the effect of temperature on the mechanical behavior of the resin and resin fiber interfaces. In this study, the effect of temperature on the impact response of the carbon fiber reinforced plastics (CFRP) was investigated at low-velocity impact (LVI) using a drop-weight impact tester machine. All the composite plates were fabricated using a vacuum infusion process with a stacking sequence of [45/0_2/-45/90_2]s, and a thickness of 2.9 mm. A group of the specimens was exposed to an environment with a temperature cycling at the range of -30 ℃ to 65 ℃. In addition, three other groups of the specimens were aged at ambient (28 ℃), -30 ℃, and 65 ℃ for ten days. Then all the conditioned specimens were subjected to LVI at three energy levels of 10, 15, and 20 J. To assess the behavior of the damaged composite plates, the force-time, force-displacement, and energy-time diagrams were analyzed at all temperatures. Finally, radiography, optical microscopy, and scanning electron microscopy (SEM) were used to evaluate the effect of the temperature and damages at various impact levels. Based on the results, different energy levels have a similar effect on the LVI behavior of the samples at various temperatures. Delamination, matrix cracking, and fiber failure were the main damage modes. Compared to the samples tested at room temperature, the reduction of temperature to -30 ℃ enhanced the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. The temperature increasing to 65 ℃ increased the maximum impact force and flexural stiffness while decreasing the absorbed energy and the failure surface area. Applying 200 thermal cycles at the range of -30 ℃ to 65 ℃ led to the formation of fine cracks in the matrix while decreasing the absorbed energy. The maximum contact force is recorded under cyclic temperature as 5.95, 6.51 and 7.14 kN, under impact energy of 10, 15 and 20 J, respectively. As well as, the minimum contact force belongs to the room temperature condition and is reported as 3.93, 4.94 and 5.71 kN, under impact energy of 10, 15 and 20 J, respectively.

Effect of thermal-induced microcracks on the failure mechanism of rock specimens

  • Khodayar, Amin;Nejati, Hamid Reza
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.93-100
    • /
    • 2018
  • It is seldom possible that geotechnical materials like rocks and concretes found without joints, cracks, or discontinuities. Thereby, the impact of micro-cracks on the mechanical properties of them is to be considered. In the present study, the effect of micro-crack on the failure mechanism of rock specimens under uniaxial compression was investigated experimentally. For this purpose, thermal stress was used to induce micro-cracks in the specimens. Several cylindrical and disk shape specimens were drilled from granite collected from Zanjan granite mine, Iran. Some of the prepared specimens were kept in room temperature and the others were heated by a laboratory furnace to different temperature levels (200, 400, 600, 800 and 1000 degree Celsius). During the experimental tests, Acoustic Emission (AE) sensors were used to monitor specimen failure at the different loading sequences. Also, Scanning Electron Microscope (SEM) was used to distinguish the induced micro-crack by heating in the specimens. The fractographic analysis revealed that the thin sections heated to $800^{\circ}C$ and $1000^{\circ}C$ contain some induced micro-fractures, but in the thin sections heated to $200^{\circ}C$, $400^{\circ}C$ and $600^{\circ}C$ have not been observed any micro-fracture. In the next, a comprehensive experimental investigation was made to evaluate mechanical properties of heated and unheated specimens. Results of experimental tests showed that induced micro-cracks significantly influence on the failure mode of specimens. The specimens kept at room temperature failed in the splitting mode, while the failure mode of specimens heated to $800^{\circ}C$ are shearing and the specimens heated to $1000^{\circ}C$ failed in the spalling mode. On the basis of AE monitoring, it is found that with increasing of the micro-crack density, the ratio of the number of shear cracks to the number of tensile cracks increases, under loading sequences.

Mechanical analysis for prestressed concrete containment vessels under loss of coolant accident

  • Zhou, Zhen;Wu, Chang;Meng, Shao-ping;Wu, Jing
    • Computers and Concrete
    • /
    • v.14 no.2
    • /
    • pp.127-143
    • /
    • 2014
  • LOCA (Loss Of Coolant Accident) is one of the most important utmost accidents for Prestressed Concrete Containment Vessel (PCCV) due to its coupled effect of high temperature and inner pressure. In this paper, heat conduction analysis is used to obtain the LOCA temperature distribution of PCCV. Then the elastic internal force of PCCV under LOCA temperature is analyzed by using both simplified theoretical method and FEM (finite element methods) method. Considering the coupled effect of LOCA temperature, a nonlinear elasto-plasitic analysis is conducted for PCCV under utmost internal pressure considering three failure criteria. Results show that the LOCA temperature distribution is strongly nonlinear along the shell thickness at the early time; the moment result of simplified analysis is well coincident with the one of numerical analysis at weak constraint area; while in the strong constrained area, the value of moments and membrane forces fluctuate dramatically; the simplified and numerical analysis both show that the maximum moment occurs at 6hrs after LOCA.; the strain of PCCV under LOCA temperature is larger than the one of no temperature under elasto-plastic analysis; the LOCA temperature of 6hrs has the greatest influence on the ultimate bearing capacity with 8.43% decrease for failure criteria 1 and 2.65% decrease for failure criteria 3.

Experimental and Numerical Analysis on Full High Strength Steel Extended Endplate Connections in Fire

  • Qiang, Xuhong;Wu, Nianduo;Jiang, Xu;Luo, Yongfeng;Bijlaard, Frans
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1350-1362
    • /
    • 2018
  • Full-scale experimental study and numerical analysis on behaviors and failure mechanisms of full high strength steel extended endplate connections in fire have been carried out and presented in this paper. The experimental behaviors of the connections were compared with the provisions of Eurocode 3. The test results show that the failure modes of the connections in fire are bolt failure with yielding of the flange, as same as those at ambient temperature. The failures of the bolts in fire are ductile while they are brittle at ambient temperature. The rotation capacity of the connections in fire is proved sufficient. What is more, at elevated temperature $550^{\circ}C$, the plastic moment resistances of Q690 and Q960 full high strength steel endplate connections are only 40% of those at ambient temperature, while their initial rotation stiffness are 66 and 63% respectively. But the rotation capacities of Q690 and Q960 high strength steel endplate connections are 1.38 and 1.74 times of those at ambient temperature. Moreover, it is found that the component method Eurocode 3 proposed based on connections made of mild steels can be used to calculate plastic resistances and to predict failure modes of high strength steel endplate connections in fire, but it is not suitable to predict their stiffness. The suggestions about rotation capacity of connections in Eurocode 3 are found too conservative for high strength steel endplate connections in fire.

Moment curvature method for fire safety design of steel beams

  • Yu, H.X.;Richard Liew, J.Y.
    • Steel and Composite Structures
    • /
    • v.4 no.3
    • /
    • pp.227-246
    • /
    • 2004
  • This paper presents a moment-curvature method that accounts for the strength deterioration of steel at elevated temperature in estimating the response of steel beams exposed to fire. A modification to the EC4 method is proposed for a better estimation of the temperature distribution in the steel beam supporting a concrete slab. The accuracy of the proposed method is verified by comparing the results with established test results and the nonlinear finite element analysis results. The beam failure criterion based on a maximum strain of 0.02 is proposed to assess the limiting temperature as compared to the traditional criteria that rely on deflection limit or deflection rate. Extensive studies carried out on steel beams with various span lengths, load ratios, beam sizes and loading types show that the proposed failure criterion gives consistent results when compared to nonlinear finite element results.

Thermal Stress Analysis of Brake Drum by Using Finite Element Analysis (유한요소법을 이용한 브레이크 드럼의 열응력 해석)

  • 박영철;박동성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.3
    • /
    • pp.77-84
    • /
    • 2000
  • Nonlinear transient analysis is executed to obtain the temperature distribution, and to evaluate the thermal stress of brake drum by using FEA(finite element analysis). The result induces the reason why hair crack and the cause of drum failure occurs and the way how stress of drum decreases. The temperature of drum is in proportion to the drum thickness and it processes nonlinear changes at every points of drum. The higher bulk temperature raises, the more stress difference between inner surface and outer surface makes and the highest bulk temperature is at the corner section. It is necessary for the diminishment of the drum stress to make air flow, between drum and rim, move lively and use the materials of higher conductivity. The hair crack and the cause of drum failure seem to be started at the near corner section.

  • PDF

Requirements Development for Intermittent Failure Detection of an Avionics Backplane based on Physics-of-Failure (백플레인 형식 항전장비에서 발생하는 간헐결함 탐지를 위한 고장물리 기반의 요구도 개발)

  • Lee, Hoyong;Lee, Ighoon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.3
    • /
    • pp.15-23
    • /
    • 2019
  • This paper contains analyses and development processes of the requirements to detect the possible intermittent failure in an old avionics backplane. Interconnections for signal transmission between electronic components, such as Pin-to-PCB, FPCB-to-FPCB, pin-to-FPCB, and pint-to-wire, were selected as the main cause of intermittent failure by analyzing target equipment and documents. The possibility of detecting intermittent failures occurring in the target equipment is verified by physics-of-failure analyses. In order to verify the occurrence of intermittent failures and their detectability, latching continuity circuit testers were manufactured and accelerated life tests were performed by applying temperature and vibration cycle in consideration of flight conditions. Through the above process, the detection requirements for the major intermittent failure in the target avionics backplane was developed.