• Title/Summary/Keyword: failure surface

Search Result 1,881, Processing Time 0.038 seconds

Heading Failure Modes during Underground Excavation (지하공간 건설에 따른 굴착전면의 파괴모드)

  • Kwon, Oh-Yeob;Cho, Jae-Wan;Shin, Jong-Ho;Choi, Ypng-Ki;Shin, Yong-Suk
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.409-416
    • /
    • 2005
  • Design analysis for underground spaces requires evaluating stability related to tunnel collapses. A failure mode is one of the critical factors in the conventional methods of stability analysis. Therefore identification of failure modes is essential in securing safe construction in the phase of design analysis, instrumentation planning and implementation of reinforcing measures. In this study failure modes at the tunnel heading in granular soils are investigated using physical model tests and numerical simulation for various tunnel depths and ground surface inclinations. Test results indicated that the effect of depth and inclination of ground surface on a failure mode are significant. It is identified that, with an incase in depth, failure modes become localized in a region close to the tunnel. It is also known that an increase in the inclination of ground surface results in inclined and wide failure modes.

  • PDF

Solder Joints Fatigue Life of BGA Package with OSP and ENIG Surface Finish (OSP와 ENIG 표면처리에 따른 BGA 패키지의 무연솔더 접합부 피로수명)

  • Oh, Chulmin;Park, Nochang;Hong, Wonsik
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.2
    • /
    • pp.80-87
    • /
    • 2008
  • Many researches related to the reliability of Pb-free solder joints with PCB (printed circuit board) surface finish under thermal or vibration stresses are in progress, because the electronics is operating in hash environment. Therefore, it is necessary to assess Pb-free solder joints life with PCB surface finish under thermal and mechanical stresses. We have investigated 4-points bending fatigue lifetime of Pb-free solder joints with OSP (organic solderability preservative) and ENIG (electroless nickel and immersion gold) surface finish. To predict the bending fatigue life of Sn-3.0Ag-0.5Cu solder joints, we use the test coupons mounted 192 BGA (ball grid array) package to be added the thermal stress by conducting thermal shock test, 500, 1,000, 1,500 and 2,000 cycles, respectively. An 4-point bending test is performed in force controlling mode. It is considered that as a failure when the resistance of daisy-chain circuit of test coupons reaches more than $1,000{\Omega}$. Finally, we obtained the solder joints fatigue life with OSP and ENIG surface finish using by Weibull probability distribution.

Probabilistic Analyrgis of Slope Stactility for Progressive Failure (진행성 파괴에 대한 사면안정의 확률론적 해석)

  • 김영수
    • Geotechnical Engineering
    • /
    • v.4 no.2
    • /
    • pp.5-14
    • /
    • 1988
  • A probabilistic model for the progressive failure in a homogeneous soil slope consisting of strain-softening material is presented. The local safety margin of any slice above failure surface is assumed to follow a normal distribution. Uncertainties of the shear strength along potential failure surface are expressed by one-dimensional random field models. In this paper, only the case where failure initiates at toe and propagates up to the crest is considerd. The joint distribution of the safety margin of any two adjacent slices above the failure surface is assumed to be bivariate normal. The overall probability of the sliding failure is expressed as a product of probabilities of a series of conditional el.eats. Finally, the developed procedure has been applied in a case study to yield the reliability of a cut slope.

  • PDF

Active Earth Pressure behind Rigid Retaining Wall Rotating about the Base (저점을 중심으로 회전하는 강성옹벽에 작용하는 주동토압)

  • 백규호
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.193-203
    • /
    • 2004
  • Arching effects in backfill materials generate a nonlinear active earth pressure distribution on a rigid retaining wall with rough face, and arching effects on the shape of the nonlinear earth pressure distribution depends on the mode of wall movement. Therefore, the practical shape of failure surface and arching effect in the backfill changed with the mode of wall movement must be considered to calculate accurate magnitude and distribution of active earth pressure on the rigid wall. In this study, a new formulation for calculating the active earth pressure on a rough rigid retaining wall rotating about the base is proposed by considering the shape of nonlinear failure surface and arching effects in the backfill. In order to avoid mathematical complexities in the calculation of active earth pressure, the imaginary failure surface composed of four linear surfaces is used instead of the nonlinear failure surface as failure surface of backfills. The comparisons between predictions from the proposed equations and existing model test results show that the proposed equations produce satisfactory predictions.

Capabilities of stochastic response surface method and response surface method in reliability analysis

  • Jiang, Shui-Hua;Li, Dian-Qing;Zhou, Chuang-Bing;Zhang, Li-Min
    • Structural Engineering and Mechanics
    • /
    • v.49 no.1
    • /
    • pp.111-128
    • /
    • 2014
  • The stochastic response surface method (SRSM) and the response surface method (RSM) are often used for structural reliability analysis, especially for reliability problems with implicit performance functions. This paper aims to compare these two methods in terms of fitting the performance function, accuracy and efficiency in estimating probability of failure as well as statistical moments of system output response. The computational procedures of two response surface methods are briefly introduced first. Then their capabilities are demonstrated and compared in detail through two examples. The results indicate that the probability of failure mainly reflects the accuracy of the response surface function (RSF) fitting the performance function in the vicinity of the design point, while the statistical moments of system output response reflect the accuracy of the RSF fitting the performance function in the entire space. In addition, the performance function can be well fitted by the SRSM with an optimal order polynomial chaos expansion both in the entire physical and in the independent standard normal spaces. However, it can be only well fitted by the RSM in the vicinity of the design point. For reliability problems involving random variables with approximate normal distributions, such as normal, lognormal, and Gumbel Max distributions, both the probability of failure and statistical moments of system output response can be accurately estimated by the SRSM, whereas the RSM can only produce the probability of failure with a reasonable accuracy.

Failure Assessment Diagrams of Semi-Elliptical Surface Crack with Constraint Effect (구속상태를 고려한 반타원 표면균열의 파손평가선도)

  • Seo, Heon;Han, Tae-Su;Lee, Hyeong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2022-2032
    • /
    • 1999
  • In recent years, the subject of remaining life assessment has drawn considerable attention in the power generation industry. In power generation systems a variety of structural components, such as steam pipes, turbine rotors, and superheater headers, typically operate at high temperatures and high pressures. Thus a life prediction methodology accounting for fracture and rupture is increasingly needed for these components. For accurate failure assessment, in addition to the single parameter such as K or J-integral used in traditional fracture mechanics, the second parameter like T-stress describing the constraint is needed. The most critical defects in such structures are generally found in the form of semi-elliptical surface cracks in the welded piping-joints. In this work, selecting the structures of surface-cracked plate and straight pipe, we first perform line-spring finite element modeling, and accompanying elastic-plastic finite element analyses. We then present a framework for including constraint effects (T-stress effects) in the R6 failure assessment diagram approach for fracture assessment.

Enhanced Interfacial Adhesion between Polymers and Metals(Cu) by Low Energy Ion-beam Irradiation with Reactive Gases (반응성 기체를 첨가한 저 에너지 이온빔 처리에 의한 고분자와 금속 간의 계면 접착력 증가에 관한 연구)

  • Lee, Ji-Seok;Seo, Yong-Sok;Kim, Han-Seong;Gang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.75-78
    • /
    • 2005
  • Using a low-energy Ar+ ion-beam with and without reactive gases, polymers such as chemically stable poly(ether ether ketone) (PTFE) and poly(ether ether ketone) (PEEK) films were modified to have special surface features. The adhesion strength between the polymers and the copper was significantly improved because of both changes in the surface topography and chemical interactions due to polymer surface functionalization (oxidation and amination). The surface modification altered the failure mode from adhesive failure for the unmodified polymer/Cu interface to cohesive failure for the surface-modified polymer/Cu layer interface..

  • PDF

Reliability analysis of shallow tunnel with surface settlement

  • Yang, X.L.;Li, W.T.
    • Geomechanics and Engineering
    • /
    • v.12 no.2
    • /
    • pp.313-326
    • /
    • 2017
  • Based on the reliability theory and limit analysis method, the roof stability of a shallow tunnel is investigated under the condition of surface settlement. Nonlinear Hoek-Brown failure criterion is adopted in the present analysis. With the consideration of surface settlement, the internal energy and external work are calculated. Equating the rate of energy dissipation to the external rate of work, the expression of support pressure is derived. With the help of variational approach, a performance function is proposed to reliability analysis. Improved response surface method is used to calculate the Hasofer-Lind reliability index and the failure probability. In order to assess the validity of the present results, Monte-Carlo simulation is performed to examine the correctness. Sensitivity analysis is used to estimate the influence of different variables on reliability index. Among random variables, the unit weight significantly affects the reliability index. It is found that the greater coefficient of variation of variables lead to the higher failure probability. On the basis of the discussions, the reliability-based design is achieved to calculate the required tunnel support pressure under different situations when the target reliability index is obtained.

Stability analyses of railroad cut-off soil slopes considering rainfall infiltration (강우에 의한 침투를 고려한 철도 절개 토사 사면의 안정해석)

  • Lee, Su-Hyung;Hwang, Seon-Keun;Kim, Hyun-Ki;SaGong, Myung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.811-818
    • /
    • 2005
  • Stability analyses on the 17 railroad cut-off soil slopes were carried out. The influences of rainfall infiltration on the slope stabilities were taken into account by seepage analyses using finite element method and by assuming ground water tables to be located adjacent to soil surface. The validity of those analyses were evaluated by comparing the slope failure characteristics between analysis results and the past failure records. The analyses were not appropriate to estimate the failure surface and the method considering only the increase of pore-water pressure (reduction of matric suction) as the influence of rainfall cannot appropriately estimate the surficial failures that occurred most of the cut-off soil slopes. For the better estimation of the surficial failure, the influence of water flows over slope surface which erode soil mass and/or increase driving force, should be evaluated and considered.

  • PDF

A new analytical model to determine dynamic displacement of foundations adjacent to slope

  • Varzaghani, Mehdi Imani;Ghanbari, Ali
    • Geomechanics and Engineering
    • /
    • v.6 no.6
    • /
    • pp.561-575
    • /
    • 2014
  • Estimating seismic displacements has a great importance for foundations on or adjacent to slope surfaces. However, dynamic solution of the problem has received little attention by previous researchers. This paper presents a new analytical model to determine seismic displacements of the shallow foundations adjacent to slopes. For this purpose, a dynamic equilibrium equation is written for the foundation with failure wedge. Stiffness and damping at the sliding surface are considered variable and a simple method is proposed for its estimation. Finally, for different failure surfaces, the calculated dynamic displacement and the surfaces with maximum strain are selected as the critical failure surface. Analysis results are presented as curves for different slope angles and different foundation distances from edge of the slope and are then compared with the experimental studies and software results. The comparison shows that the proposed model is capable of estimating seismic displacement of the shallow foundations adjacent to slopes. Also, the results demonstrate that, with increased slope angle and decreased foundation distances from the slope edge, seismic displacement increases in a non-linear trend. With increasing the slope angle and failure wedge angle, maximum strain of failure wedge increases. In addition, effect of slope on foundation settlement could be neglected for the foundation distances over 3B to 5B.