• Title/Summary/Keyword: failure surface

Search Result 1,881, Processing Time 0.03 seconds

A Study on the Formation and the Loss of the Protective Layer the Sliding Surface According to the Lubricating Conditions (미끄럼운동을 하는 면에 윤활 조건에 따라 발생하는 보호막의 형성과 파괴에 관한 연구)

  • 이영제
    • Tribology and Lubricants
    • /
    • v.7 no.1
    • /
    • pp.16-27
    • /
    • 1991
  • The mechanism of failure of lubricated surfaces at high sliding speeds was investigated. Experiments were performed with the ball-on-flat and cylinder-on-flat geometries, using lubricants of four different chemical reactivities. Surface failure was found to not be predictable using the ratio, $\lambda$, of fluid film thickness to composite surface roughness except when chemically inert lubricants are used. Even then the influence of temperature rise on fluid film thickness does not adequately explain the low load carrying capacity of lubricants at high sliding speeds, which causes surface failure. The protective layers on sliding surfaces that form by chemical reaction with the lubricant were found to reduce the surface roughening and increase the load carrying capacity of surfaces to values of $\lambda$ as low as 0.03. Neither the surface roughening nor the formation of the protective layers have been incorporated into failure models for lubricated systems.

Experimental study of shear behavior of planar nonpersistent joint

  • Haeri, Hadi;Sarfarazi, Vahab;Lazemi, Hossein Ali
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.639-653
    • /
    • 2016
  • The present article discusses the effect of the ratio of bridge surface to total shear surface, number of bridge areas and normal stress on the failure behavior of the planar non-persistent open joints. Totally, 38 models were prepared using plaster and dimensions of $15cm{\times}15cm{\times}15cm$. The bridge area occupied $45cm^2$, $90cm^2$ and $135cm^2$ out of the shear surface. The number of rock bridges increase in fixed area. Two similar samples were prepared on every variation in the rock bridges and tested for direct shear strength under two high and low normal loads. The results indicated that the failure pattern and the failure mechanism is mostly influenced by the ratio of bridge surface to total shear surface and normal stress so that the tensile failure mode change to shear failure mode by increasing in the value of introduced parameters. Furthermore, the shear strength and shear stiffness are closely related to the ratio of bridge surface to total shear surface, number of bridge areas and normal stress.

Analysis of Slope Stability in Slopes of Failed and not Excavated (붕괴된 사면과 굴착되지 않은 사면의 안정성 검토)

  • 유병옥;김경석;이용희
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.129-144
    • /
    • 2003
  • Generally, investigation methods of cut slope are conducted only geological surface survey to gain engineering geological data of cut slopes. These methods have many problems such as limitations of investigation for a special area. So geophysical investigations such as geotomography, seismic and electrical resistivity methods have been used to search for failure surface in potential failure slopes or failed slopes. But investigation method using the borehole camera is recently a used method and it is thought that this method is more reliable method than other investigation methods because of being able to see by the eyes. Therefore, this paper was conducted investigations of borings and BIPS(Borehole Image Processing System) to search for potential sliding surfaces and was applied to obtain information of discontinuity on failed and potential failure slope in highway. As the results of BIPS, we could decide potential sliding surface in the slope, conducted to check slope stability and decided slope stability measures.

  • PDF

Image-based characterization of internal erosion around pipe in earth dam

  • Dong-Ju Kim;Samuel OIamide Aregbesola;Jong-Sub Lee;Hunhee Cho;Yong-Hoon Byun
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.481-496
    • /
    • 2024
  • Internal erosion around pipes can lead to the failure of earth dams through various mechanisms. This study investigates the displacement patterns in earth dam models under three different failure modes due to internal erosion, using digital image correlation (DIC) methods. Three failure modes—erosion along a pipe (FM1), pipe leakage leading to soil erosion (FM2), and erosion in a pipe due to defects (FM3)—are analyzed using two- and three-dimensional image- processing techniques. The internal displacement of the cross-sectional area and the surface displacement of the downstream slope in the dam models are monitored using an image acquisition system. Physical model tests reveal that FM1 exhibits significant displacement on the upper surface of the downstream slope, FM2 shows focused displacement around the pipe defect, and FM3 demonstrates increased displacement on the upstream slope. The variations in internal and surface displacements with time depend on the segmented area and failure mode. Analyzing the relationships between internal and surface displacements using Pearson correlation coefficients reveals various displacement patterns for the segmented areas and failure modes. Therefore, the image-based characterization methods presented in this study may be useful for analyzing the displacement distribution and behavior of earth dams around pipes, and further, for understanding and predicting their failure mechanisms.

Failure Modes of Vertical Ground Anchor in Plane Strain (평면변형률 상태에 있는 연직지반앵커의 파괴모-드)

  • Im, Jong-Cheol;;Park, Seong-Jae
    • Geotechnical Engineering
    • /
    • v.6 no.1
    • /
    • pp.43-58
    • /
    • 1990
  • In order to get ultimate pullout resistance of ground anchor, the position of failure surface, normal stress and friction angle on the failure surface should be known. In this study, the position of failure surface is obtained by observing deformation of ground around anchor, and stresses on the anchor surface are analyzed by measuring normal and shear stresses on the anchor surface through model anchor test in plane strain. In addition, the relationship between lateral earth pressure and the position of failure surface is analyzed and the formula for calculating ultimate pullout resistance of anchor is proposed by using non-dimensional coefficient of ultimate pullout resistance.

  • PDF

미끄럼운동을 하는 면에 윤활 조건에 따라 발생하는 보호막의 형성과 파괴에 관한 연구

  • 이영재
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1990.11a
    • /
    • pp.16-35
    • /
    • 1990
  • The mechanism of failure of lubricated surfaces at high sliding speeds was Investigated. Experiments were performed with the ball-on-flat and cylinder-on-flat geometries, using lubricants of four different chemical reactivities. Surface failure was found to not be predictable using the ratlo, $\lambda$, of fluid film thickness to composite surface roughness except when chemically inert lubricants are used. Even then the influence of temperature rise on fluid film thickness does not adequately explain the low load carrying capacity of lubricants at high sliding speeds. which causes surface failure. The protective layers on sliding surfaces that form by chemical reaction with the lubricant were found to reduce the surface roughentrig and Increase the load carrying capacity of surfaces to values of $\lambda$ as low as 0.03. Neither the surface toughening nor the formation of the protective layers have been incorporated Into failure models for lubricated systems.

  • PDF

Numerical Analysis on Progressive Failure of Plane Slopes (평면 사면의 점진적 파괴에 관한 수치해석)

  • 송원경;권광수
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.31-38
    • /
    • 1997
  • Residual shear strength should be taken into consideration as well as peak one when analysing stability of slopes constituted by weathered rock or overconsolidated soils since such materials could be subjected to progressive failure mechanism. When landslide of a slope is related to progressive failure phenomenon, the failure might occur even though shear strength of the slope materials does not reach their residual shear strength over the whole slip surface. Therefore, stability of the slope concerned may be overstimated or underestimated when using only its peak or residual shear srength parameters. Mechanical description for progressive failure phenomenon is given by Bjerrum(1967). In parameters. Mechanical description for progressive failure phenomenon is given by Bjerrum(1967). In this study, his theory has been extended to estimate the distance of failed zone for a plane slope and the results calculated by this extended equatio has been compared with that obtained by numerical modelling using FLAC. In addition, stress state on the slip surface has been, in detail, analysed to understand failure mechanism when a limited progressive failure occurs. Effects of mechanical and hydraulic factors on progressive failure have also been analysed.

  • PDF

Static and quasi-static slope stability analyses using the limit equilibrium method for mountainous area

  • Hosung Shin
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.187-195
    • /
    • 2023
  • Intensive rainfall during the summer season in Korea has triggered numerous devastating landslides outside of downtown in mountainous areas. The 2D slope stability analysis that is generally used for cut slopes and embankments is inadequate to model slope failure in mountainous areas. This paper presents a new 3D slope stability formulation using the global sliding vector in the limit equilibrium method, and it uses an ellipsoidal slip surface for static and quasi-static analyses. The slip surface's flexibility of the ellipsoid shape gives a lower FS than the spherical failure shape in the Fellenius, Bishop, and Janbu's simplified methods. The increasing sub-columns of each column tend to increase the FS and converge to a steady value. The symmetrical geometric conditions of the convex turning corners do not indicate symmetrical failure of the surface in 3D analysis. Pseudo-static analysis shows that the horizontal seismic force decreases the FS and increases the mass volume at the critical failure state. The stability index takes the FS and corresponding sliding mass into consideration to assess the potential risk of slope failure in complex mountainous terrain. It is a valuable parameter for selecting a vulnerable area and evaluating the overall risk of slope failure.

Failure Mechanism of Cu/PET Flexible Composite Film with Anisotropic Interface Nanostructure

  • Park, Sang Jin;Han, Jun Hyun
    • Korean Journal of Materials Research
    • /
    • v.30 no.3
    • /
    • pp.105-110
    • /
    • 2020
  • Cu/PET composite films are widely used in a variety of wearable electronics. Lifetime of the electronics is determined by adhesion between the Cu film and the PET substrate. The formation of an anisotropic nanostructure on the PET surface by surface modification can enhance Cu/PET interfacial adhesion. The shape and size of the anisotropic nanostructures of the PET surface can be controlled by varying the surface modification conditions. In this work, the effect of Cu/PET interface nanostructures on the failure mechanism of a Cu/PET flexible composite film is studied. From observation of the morphologies of the anisotropic nanostructures on plasma-treated PET surfaces, and cross-sections and surfaces of the fractured specimens, the Cu/PET interface area and nanostructure width are analyzed and the failure mechanism of the Cu/PET film is investigated. It is found that the failure mechanism of the Cu/PET flexible composite film depends on the shape and size of the plasmatreated PET surface nanostructures. Cu/PET interface nanostructures with maximal peel strength exhibit multiple craze-crack propagation behavior, while smaller or larger interface nanostructures exhibit single-path craze-crack propagation behavior.

A STUDY ON THE BOND STRENGTH OF RESIN-RETAINED PROTHESIS WITH VARIOUS CAST RETAINER DESIGNS (주조체의 설계 변화에 따른 수지접착형 보철물의 접착강도에 관한 연구)

  • Joo Dae-Won;Chang Ik-Tae;Kim Kwang-Nam
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.4
    • /
    • pp.508-525
    • /
    • 1992
  • The purpose of this study was to evaluate the effect of some resistance form designs on the bond strength of resin-retained prosthesis. Six sub-groups are designed in natural teeth group and resin teeth group . The framework designs in natural teeth group: 1) no groove preparation 2) groove at the center of distal surface 3) groove at the distobuccal line angle 4) 45 degree lateral load with no groove 5) 45 degree lateral load with center groove 6) splint two teeth with no groove. The framework designs in resin teeth group: 1) no groove preparation 2) groove at the center of distal surface 3) groove at the distobuccal line angle 4) metal covered the 1/2 of distal surface 5) metal covered the 1/2 of mesial surface 6) metal extended over the 114 of buccal surface. Specimens were treated electrolytic etching by Oxy-Etch and cemented with Panavia EX. Failure load was measured by Instron. Another 30 specimens were carried out fatigue tests by MTS 810 fatigue testing machine for 5000 cycles at different load level. The following results were obtained from this study. 1. The failure load was significantly increased by resistance forms. 2. The failure load was not increased by increase of total surface area bonded with teeth. The distal surface area played an important role in failure load. 3. In 45 degree lateral load group, the failure load was decreased significantly than that of in vertical load group. 4. Bond failure modes between static test and fatigue test exhibited no differences.

  • PDF