• Title/Summary/Keyword: failure site

Search Result 759, Processing Time 0.043 seconds

The impact of the alveolar bone sites on early implant failure: a systematic review with meta-analysis

  • Fouda, Atef Abdel Hameed
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.46 no.3
    • /
    • pp.162-173
    • /
    • 2020
  • Dental implants are the first option for replacement of missing teeth. Failure usually involves additional cost and procedures. As a result, the physician should limit the risk factors associated with implant failures. Implant site is one of many factors that can influence the success or failure of dental implants. The association between early implant failure (EIF) and implant site has yet to be documented. This review aims to estimate the impact of insertion site on the percentage of EIFs. An electronic and manual search of studies that reported early failure of dental implants based on collection site. A total of 21 studies were included in the review and examined for the association between EIF and alveolar site. Subgroup analysis, including a comparison between implants inserted in four alveolar ridge regions of both jaws was performed. The early failure rate was higher for maxillary implants (3.14%) compared to mandibular implants (1.96%). Applying a random effect, risk ratio (RR), and confidence interval (CI) of 95% revealed higher failure in the maxilla compared to the mandible (RR 1.41; 95% CI [1.19, 1.67]; P<0.0001; I2=58%). The anterior maxilla is more critical for early implant loss than other alveolar bone sites. Implants in the anterior mandible exhibited the best success rate compared of the sites.

Repeated failure of implants at the same site: a retrospective clinical study

  • Kang, Dong-Woo;Kim, So-Hyun;Choi, Yong-Hoon;Kim, Young-Kyun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.41
    • /
    • pp.27.1-27.9
    • /
    • 2019
  • Background: Implants are becoming the first choice of rehabilitation for tooth loss. Even though they have a high success rate, failures still occur for many reasons. The objective of this study is to analyze the reasons for recurring failure at the same site and the results of re-implantation. Methods: Thirteen patients (11 males and 2 females, mean age 60 ± 9.9 years) who experienced implant surgery failure at the same site (same tooth extraction area) two or more times in the Department of Oral and Maxillofacial Surgery, Seoul National University Bundang Hospital, between 2004 and 2017 were selected. The medical records on a type, sites, diameter, and length of implants; time and estimated cause of failure; and radiographs were reviewed. Data were collected and analyzed retrospectively, and the current statuses were evaluated. Results: A total of 14 implants experienced failure in the same site more than two times. Twelve implants were placed in the maxilla, while 2 implants were placed in the mandible. The maxillary molar area was the most common site of failure (57.1%), followed by the mandibular molar, anterior maxilla, and premolar areas (14.3% each). The first failure occurred most commonly after prosthetic treatment (35.7%) with an average period of failure of 3.8 months after loading. Ten cases were treated as immediate re-implantation, while the other 4 were delayed reimplantation after an average of 3.9 months. The second failure occurred most commonly after prosthetic treatment (42.9%), with an average of 31 months after loading; during the healing period (42.9%); and during the ongoing prosthetic period (14.3%). In 3 cases (21.4%), the treatment plan was altered to an implant bridge, while the other 11 cases underwent another implant placement procedure (78.6%). Finally, a total of 9 implants (64.3%) survived, with an average functioning period of 60 months. Conclusions: Implants can fail repeatedly at the same site due to overloading, infection, and other unspecified reasons. The age and sex of the patient and the location of implant placement seem to be associated with recurring failure. Type of implant, bone augmentation, and bone materials used are less relevant.

Case Studies of EPS Failure and Quality Control by Site Monitoring (EPS 공법의 파괴사례 및 품질관리 개선방안)

  • 김호비;주태성;류기정;한태곤;김태경;정종권
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.401-408
    • /
    • 2003
  • EPS(Expanded Polystyrene) has been used in a variety of applications as a solution of difficult soil conditions encountered in construction activities. Although there has been significant worldwide growth in the use of EPS as a lightweight fill material, it has a few failure cases before and after the construction. This paper described the observed failures of EPS structures up In date around the world. Also, method of quality control was proposed for site monitoring.

  • PDF

Development of logical structure for multi-unit probabilistic safety assessment

  • Lim, Ho-Gon;Kim, Dong-San;Han, Sang Hoon;Yang, Joon Eon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1210-1216
    • /
    • 2018
  • Site or multi-unit (MU) risk assessment has been a major issue in the field of nuclear safety study since the Fukushima accident in 2011. There have been few methods or experiences for MU risk assessment because the Fukushima accident was the first real MU accident and before the accident, there was little expectation of the possibility that an MU accident will occur. In addition to the lack of experience of MU risk assessment, since an MU nuclear power plant site is usually very complex to analyze as a whole, it was considered that a systematic method such as probabilistic safety assessment (PSA) is difficult to apply to MU risk assessment. This paper proposes a new MU risk assessment methodology by using the conventional PSA methodology which is widely used in nuclear power plant risk assessment. The logical failure structure of a site with multiple units is suggested from the definition of site risk, and a decomposition method is applied to identify specific MU failure scenarios.

Instrumentation Failure after Partial Corpectomy with Instrumentation of a Metastatic Spine

  • Park, Sung Bae;Kim, Ki Jeong;Han, Sanghyun;Oh, Sohee;Kim, Chi Heon;Chung, Chun Kee
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.3
    • /
    • pp.415-423
    • /
    • 2018
  • Objective : To identify the perioperative factors associated with instrument failure in patients undergoing a partial corpectomy with instrumentation (PCI) for spinal metastasis. Methods : We assessed the one hundred twenty-four patients with who underwent PCI for a metastatic spine from 1987 to 2011. Outcome measure was the risk factor related to implantation failure. The preoperative factors analyzed were age, sex, ambulation, American Spinal Injury Association grade, bone mineral density, use of steroid, primary tumor site, number of vertebrae with metastasis, extra-bone metastasis, preoperative adjuvant chemotherapy, and preoperative spinal radiotherapy. The intraoperative factors were the number of fixed vertebrae, fixation in osteolytic vertebrae, bone grafting, and type of surgical approach. The postoperative factors included postoperative adjuvant chemotherapy and spinal radiotherapy. This study was supported by the National Research Foundation grant funded by government. There were no study-specific biases related to conflicts of interest. Results : There were 15 instrumentation failures (15/124, 12.1%). Preoperative ambulatory status and primary tumor site were not significantly related to the development of implant failure. There were no significant associations between insertion of a bone graft into the partial corpectomy site and instrumentation failure. The preoperative and operative factors analyzed were not significantly related to instrumentation failure. In univariable and multivariable analyses, postoperative spinal radiotherapy was the only significant variable related to instrumentation failure (p=0.049 and 0.050, respectively). Conclusion : When performing PCI in patients with spinal metastasis followed by postoperative spinal radiotherapy, the surgeon may consider the possibility of instrumentation failure and find other strategies for augmentation than the use of a bone graft for fusion.

A novel risk assessment approach for data center structures

  • Cicek, Kubilay;Sari, Ali
    • Earthquakes and Structures
    • /
    • v.19 no.6
    • /
    • pp.471-484
    • /
    • 2020
  • Previous earthquakes show that, structural safety evaluations should include the evaluation of nonstructural components. Failure of nonstructural components can affect the operational capacity of critical facilities, such as hospitals and fire stations, which can cause an increase in number of deaths. Additionally, failure of nonstructural components may result in economic, architectural, and historical losses of community. Accelerations and random vibrations must be under the predefined limitations in structures with high technological equipment, data centers in this case. Failure of server equipment and anchored server racks are investigated in this study. A probabilistic study is completed for a low-rise rigid sample structure. The structure is investigated in two versions, (i) conventional fixed-based structure and (ii) with a base isolation system. Seismic hazard assessment is completed for the selected site. Monte Carlo simulations are generated with selected parameters. Uncertainties in both structural parameters and mechanical properties of isolation system are included in simulations. Anchorage failure and vibration failures are investigated. Different methods to generate fragility curves are used. The site-specific annual hazard curve is used to generate risk curves for two different structures. A risk matrix is proposed for the design of data centers. Results show that base isolation systems reduce the failure probability significantly in higher floors. It was also understood that, base isolation systems are highly sensitive to earthquake characteristics rather than variability in structural and mechanical properties, in terms of accelerations. Another outcome is that code-provided anchorage failure limitations are more vulnerable than the random vibration failure limitations of server equipment.

CLINICAL STUDY ON SUCCESS RATE OF TG OSSEOTITE IMPLANT (TG Osseotite 임플란트의 성공률에 대한 임상적 연구)

  • Oh, Sung-Hwan;Min, Seung-Ki;Chae, Young-Won
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.27 no.1
    • /
    • pp.39-47
    • /
    • 2005
  • The purpose of this study is to review the prognosis of the TG Osseotite implant(3i Co, USA) placed in partial edentulous area of oral cavity and to suspect the possible causes leading to failure. 124 TG Osseotite implants that had been inserted between 2000 - 2002 were followed up for 2 years(avg : 9.5 months) in function. Medical records, and radiographs were evaluated and analyzed by the over all success rate, gender and age factor, general disease, implant fixture length and diameter, implant site, bone density, and various surgical methods. Chi square test was used statistically. Of the 124 TG Osseotite implants, 9 implants(7.3%) were removed in early phase and 3 implants(2.4%) were in late phase. The cumulative survival rate was 90.2%. The failure of the TG Osseotite implant was closely related with the use of bone graft techniques such as sinus elevation or immediate implantation and not with the age, sex, general disease, implant site, bone density of implanted site. The failure of the TG Osseotite implant was well developed when it was the wide type of implant and it was inserted for single tooth replacement. The developement of peri-implantitis was the most important factor in the failure of the TG Osseotite implant.

Multi-unit Level 2 probabilistic safety assessment: Approaches and their application to a six-unit nuclear power plant site

  • Cho, Jaehyun;Han, Sang Hoon;Kim, Dong-San;Lim, Ho-Gon
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1234-1245
    • /
    • 2018
  • The risk of multi-unit nuclear power plants (NPPs) at a site has received considerable critical attention recently. However, current probabilistic safety assessment (PSA) procedures and computer code do not support multi-unit PSA because the traditional PSA structure is mostly used for the quantification of single-unit NPP risk. In this study, the main purpose is to develop a multi-unit Level 2 PSA method and apply it to full-power operating six-unit OPR1000. Multi-unit Level 2 PSA method consists of three steps: (1) development of single-unit Level 2 PSA; (2) extracting the mapping data from plant damage state to source term category; and (3) combining multi-unit Level 1 PSA results and mapping fractions. By applying developed multi-unit Level 2 PSA method into six-unit OPR1000, site containment failure probabilities in case of loss of ultimate heat sink, loss of off-site power, tsunami, and seismic event were quantified.

Development of the Forest Road Cut-slope Rehabilitation Techniques Using Gabion Systems with Vegetation Base Materials (식생기반재 돌망태를 이용한 임도비탈면 복원기술 개발)

  • Park, Jae-Hyeon;Jeong, Yong-Ho;Choi, Hyung-Tae
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.5
    • /
    • pp.92-103
    • /
    • 2008
  • Development of new approaches to achieve naturally good ecological potential of forest road cut-slope by making the best use of advantages of gabion systems with vegetation base materials to prevent slope failure and erosion, in the area with highly erodible soil. As a result on the type analysis of gabion systems already installed in road cut-slopes, gabion systems were generally established to prevent slope failure. Existing gabion systems can be divided into monolithic and modular system and can be divided into ten subtypes according to the purpose of establishment and combination of other measures. As a result on the monitoring of erosion amount from forest road cut-slopes in the test applications, the order of erosion amount from largest to smallest is as follows : the curved road cut-slope site where normal gabion system was established ($7,911cm^3$); the control site ($7,632cm^3$); the straight road cut-slope site where normal gabion system was established ($7,301cm^3$); the curved road cut-slope site where the new gabion system was established ($5,684cm^3$); and the straight road cut-slope site where the new gabion system ($5,325cm^3$). Therefore, the result shows that the new gabion system is more effective than the normal gabion system to reduce erosion amount from forest ! road cut-slopes. During the study period, vegetation coverages of the straight and curved road cut-slope site where the new gabion system was established were about 45% and about 36%, so average vegetation coverage of the sites where the new gabion systems was established was higher than the sites where the normal gabion systems was established. Therefore, it was concluded that the new gabion system can be more effective for cut-slope revegetation.

Cost and reliability of retrofit alternatives for schools located on seismic zones

  • De Leon-Escobedo, David;Garcia-Manjarrez, Jose Luis
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.505-514
    • /
    • 2021
  • A formulation based on structural reliability and cost effectiveness is proposed to provide recommendations to select the best retrofit strategy for schools with reinforced concrete frames and masonry walls, among three proposed alternatives. The cost calculation includes the retrofit cost and the expected costs of failure consequences. Also, the uncertainty of the seismic hazard is considered for each school site. The formulation identifies the potential failure modes, among shear and bending forces for beams, and flexure-compression forces for columns, for each school, and the seismic damages suffered by the schools after the earthquake of September 17, 2017 are taken into account to calibrate the damaged conditions per school. The school safety level is measured through its global failure probability, instead of only the local failure probability. The proposed retrofit alternatives are appraised in terms of the cost/benefit balance under future earthquakes, for the respective site seismic hazard, as opposed to the current practice of just restoring the structure original resistance. The best retrofit is the one that corresponds to the minimum value of the expected life cycle cost. The study, with further developments, may be used to develop general recommendations to retrofit schools located at seismic zones.