• Title/Summary/Keyword: failure parameters

Search Result 1,940, Processing Time 0.035 seconds

Behavior of reinforced sustainable concrete hollow-core slabs

  • Al-Azzawi, Adel A.;Shallal, Mustafa S.
    • Advances in concrete construction
    • /
    • v.11 no.4
    • /
    • pp.271-284
    • /
    • 2021
  • This study aims to trace the response of twelve one-way sustainable concrete hollow-core slabs made by reducing cement content and using replacement of coarse aggregate by plastic aggregate. The trial mixes comprise the 25, 50, 75, and 100% replacement of natural coarse aggregate. The compressive strength of the resulting lightweight concrete with full replacement of coarse aggregate by plastic aggregate was 28 MPa. These slabs are considered to have a reduced dead weight due to using lightweight aggregate and due to reducing cross-section through using voids. The samples are tested under two verticals line loads. Several parameters are varied in this study such as; nature of coarse aggregate (natural or recycled), slab line load location, the shape of the core, core diameter, flexural reinforcement ratio, and thickness of the slab. Strain gauges are used in the present study to measure the strain of steel in each slab. The test samples were fourteen one-way reinforced concrete slabs. The slab's dimensions are (1000 mm), (600 mm), (200 mm), (length, width, and thickness). The change in the shape of the core from circular to square and the use of (100 mm) side length led to reducing the weight by about (46%). The cracking and ultimate strength is reduced by about (5%-6%) respectively. With similar values of deflection. The mode of failure will remain flexural. It is recognized that when the thickness of the slab changed from (200 mm to 175 mm) the result shows a reduction in cracking and ultimate strength by about (6% and 7%) respectively.

An Optimality-Theoretic Analysis of 'It'-Extraposition in English

  • Khym, Han-gyoo
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.58-64
    • /
    • 2018
  • The Extraposition phenomenon in English has been analyzed mainly through two approaches: a derivational approach under the Principles & Parameters framework (P&P) and a representational approach under the early Minimalist framework (MP). The first one tries to understand the phenomenon as a result of the movement of a Big Subject first to the end of a sentence which is then followed by the insertion of an expletive 'it' to the empty Subject position. On the other hand, the second one tries to understand it by way of assuming a Big Subject originally base-generated at the end of a sentence which is followed by the insertion of an expletive 'it' to the empty Subject position. The two approaches, however, are not free from theoretical defects at all: the full derivational approach was under controversy in terms of (1) the failure of the Binding Theory and (2) its inability to suggest anything about the marginal reading issue. On the while, the representational approach has been argued (1) to violate the thematic hierarchy that should be kept in D-structure, and (2) to be also unable to suggest the slightest difference in marginal reading issue as the first one. In this paper I focus mainly on analyzing the 'It'-Extraposition phenomenon in the Optimality Theory. I will show that by way of (i) some newly developed constraints such as Subj., and AHSubj. and (ii) a constraint hierarchy of Subj.>>AHSubj., the controversies of 'It-Extraposition' such as (1) the analysis of construction and (2) the very closely related issue of 'marginal reading issue' can be explained properly.

The effect of particle size on the edge notched disk (END) using particle flow code in three dimension

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.22 no.6
    • /
    • pp.663-673
    • /
    • 2018
  • In this study, the effect of particle size on the cracks propagation and coalescence or cracking pattern of the edge notched disc specimens are investigated. Firstly, calibration of PFC3D was performed using Brazilian experimental test output. Then micro parameters were used to build edge notched disc specimen. The horizontal wall of the assembly is let to move downward with a standard low speed of 0.016 m/s. The numerical results show that the tensile cracks are dominant failure pattern for the modeled discs. These tensile cracks initiate from the pre-existing notch tip and propagate parallel to the loading direction then interact with the upper boundary of the modeled specimen. As the size of the balls (ball diameter) decrease the number of tensile cracks increase. The tensile fracture toughness of the samples also decreases as the particle size increases. Understanding the crack propagation and crack coalescence phenomena in brittle materials such as concretes and rocks is of paramount importance in the stability analyses for engineering structures such as rock slopes, underground structures and tunneling.

Reliability analysis of simply supported beam using GRNN, ELM and GPR

  • Jagan, J;Samui, Pijush;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.739-749
    • /
    • 2019
  • This article deals with the application of reliability analysis for determining the safety of simply supported beam under the uniformly distributed load. The uncertainties of the existing methods were taken into account and hence reliability analysis has been adopted. To accomplish this aim, Generalized Regression Neural Network (GRNN), Extreme Learning Machine (ELM) and Gaussian Process Regression (GPR) models are developed. Reliability analysis is the probabilistic style to determine the possibility of failure free operation of a structure. The application of probabilistic mathematics into the quantitative aspects of a structure and improve the qualitative aspects of a structure. In order to construct the GRNN, ELM and GPR models, the dataset contains Modulus of Elasticity (E), Load intensity (w) and performance function (${\delta}$) in which E and w are inputs and ${\delta}$ is the output. The achievement of the developed models was weighed by various statistical parameters; one among the most primitive parameter is Coefficient of Determination ($R^2$) which has 0.998 for training and 0.989 for testing. The GRNN outperforms the other ELM and GPR models. Other different statistical computations have been carried out, which speaks out the errors and prediction performance in order to justify the capability of the developed models.

Local buckling of reinforcing steel bars in RC members under compression forces

  • Minafo, Giovanni
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.527-538
    • /
    • 2018
  • Buckling of longitudinal bars is a brittle failure mechanism, often recorded in reinforced concrete (RC) structures after an earthquake. Studies in the literature highlights that it often occurs when steel is in the post elastic range, by inducing a modification of the engineered stress-strain law of steel in compression. A proper evaluation of this effect is of fundamental importance for correctly evaluating capacity and ductility of structures. Significant errors can be obtained in terms of ultimate bending moment and curvature ductility of an RC section if these effects are not accounted, as well as incorrect evaluations are achieved by non-linear static analyses. This paper presents a numerical investigation aiming to evaluate the engineered stress-strain law of reinforcing steel in compression, including second order effects. Non-linear FE analyses are performed under the assumption of local buckling. A role of key parameters is evaluated, making difference between steel with strain hardening or with perfectly plastic behaviour. Comparisons with experimental data available in the literature confirm the accuracy of the achieved results and make it possible to formulate recommendations for design purposes. Finally, comparisons are made with analytical formulations available in the literature and based on obtained results, a modification of the stress-strain law model of Dhakal and Maekawa (2002) is proposed for fitting the numerical predictions.

Multiple Sink Nodes to Improve Performance in WSN

  • Dick, Mugerwa;Alwabel, Mohammed;Kwon, Youngmi
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.6
    • /
    • pp.676-683
    • /
    • 2019
  • Wireless Sensor Networks (WSNs) consist of multiple tiny and power constrained sensors which use radio frequencies to carry out sensing in a designated sensor area. To effectively design and implement reliable WSN, it is critical to consider models, protocols, and algorithms that can optimize energy consumption of all the sensor nodes with optimal amount of packet delivery. It has been observed that deploying a single sink node comes with numerous challenges especially in a situation with high node density and congestion. Sensor nodes close to a single sink node receive more transmission traffic load compared to other sensors, thus causing quick depletion of energy which finally leads to an energy hole and sink hole problems. In this paper, we proposed the use of multiple energy efficient sink nodes with brute force technique under optimized parameters to improve on the number of packets delivered within a given time. Simulation results not only depict that, deploying N sink nodes in a sensor area has a maximum limit to offer a justifiable improvement in terms of packet delivery ratio but also offers a reduction in End to End delay and reliability in case of failure of a single sink node, and an improvement in the network lifetime rather than deploying a single static sink node.

Application of self-centering wall panel with replaceable energy dissipation devices in steel frames

  • Chao, Sisi;Wu, Hanheng;Zhou, Tianhua;Guo, Tao;Wang, Chenglong
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.265-279
    • /
    • 2019
  • The self-centering capacity and energy dissipation performance have been recognized critically for increasing the seismic performance of structures. This paper presents an innovative steel moment frame with self-centering steel reinforced concrete (SRC) wall panel incorporating replaceable energy dissipation devices (SF-SCWD). The self-centering mechanism and energy dissipation mechanism of the structure were validated by cyclic tests. The earthquake resilience of wall panel has the ability to limit structural damage and residual drift, while the energy dissipation devices located at wall toes are used to dissipate energy and reduce the seismic response. The oriented post-tensioned strands provide additional overturning force resistance and help to reduce residual drift. The main parameters were studied by numerical analysis to understand the complex structural behavior of this new system, such as initial stress of post-tensioning strands, yield strength of damper plates and height-width ratio of the wall panel. The static push-over analysis was conducted to investigate the failure process of the SF-SCWD. Moreover, nonlinear time history analysis of the 6-story frame was carried out, which confirmed the availability of the proposed structures in permanent drift mitigation.

Utilizing vacuum bagging process to enhance bond strength between FRP sheets and concrete

  • Abdelal, Nisrin R.;Irshidat, Mohammad R.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.305-312
    • /
    • 2019
  • This paper investigates the effect of utilizing vacuum bagging process to enhance the bond behavior between fiber reinforced polymer (FRP) composites and concrete substrate. Sixty specimens were prepared and tested using double-shear bond test. The effect of various parameters such as vacuum, fiber type, and FRP sheet length and width on the bond strength were investigated. The experimental results revealed that utilizing vacuum leads to improve the bond behavior between FRP composites and concrete. Both the ultimate bond forces and the maximum displacements were enhanced when applying the vacuum which leads to reduction in the amount of FRP materials needed to achieve the required bond strength compared with the un-vacuumed specimens. The efficiency of the enhancement in bond behavior due to vacuum highly depends on the fiber type; using carbon fiber showed higher enhancement in the bond strength compared to the glass fiber when vacuum was applied. On the contrary, specimens with glass fiber showed higher enhancement in the maximum slippage compared to specimens with carbon fibers. Utilizing vacuum does not affect the debonding failure modes but lead to increase in the amount of attached concrete on the surface of the debonded FRP sheet.

Further analysis on the flexural behavior of concrete-filled round-ended steel tubes

  • Ding, Fa-xing;Zhang, Tao;Wang, Liping;Fu, Lei
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.149-169
    • /
    • 2019
  • A new form of composite column, concrete-filled round-ended steel tubes (CFRTs), has been proposed as piers or columns in bridges and high-rise building and has great potential to be used in civil engineering. Hence, the objective of this paper presents an experimental and numerical investigation on the flexural behavior of CFRTs through combined experimental results and ABAQUS standard solver. The failure mode was discussed in detail and the specimens all behaved in a very ductile manner. The effect of different parameters, including the steel ratio and aspect ratio, on the flexural behavior of CFRTs was further investigated. Furthermore, the feasibility and accuracy of the numerical method was verified by comparing the FE and experimental results. The moment vs. curvature curves of CFRTs during the loading process were analyzed in detail. The development of the stress and strain distributions in the core concrete and steel tube was investigated based on FE models. The composite action between the core concrete and steel tube was discussed and clarified. In addition, the load transfer mechanism of CFRT under bending was introduced comprehensively. Finally, the predicted ultimate moment according to corresponding designed formula is in good agreement with the experimental results.

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei;Ren, Wenting;Zou, Zhengtao;Chen, Yiguang;Xie, Wei;Li, Xianjie
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.97-107
    • /
    • 2019
  • The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.