• Title/Summary/Keyword: failure parameters

Search Result 1,945, Processing Time 0.023 seconds

Right Atrial Deformation Mechanics in Children with Adenotonsillar Hypertrophy

  • Kang, Soo Jung;Kwon, Yoo Won
    • Journal of Cardiovascular Imaging
    • /
    • v.26 no.4
    • /
    • pp.201-213
    • /
    • 2018
  • BACKGROUND: Children with significant adenotonsillar hypertrophy (ATH) may show right ventricular (RV) dysfunction. We aimed to evaluate RV dysfunction in such children before adenotonsillectomy by evaluating peak longitudinal right atrial (RA) strain (PLRAS) in systole. PLRAS, electrocardiogram (ECG) and conventional echocardiographic parameters were compared to distinguish children with significant ATH with sleep-related breathing disorder (ATH-SRBD) from controls. METHODS: Fifty-six children (23 controls and 33 children with ATH-SRBD without symptoms of heart failure) were retrospectively studied. Preoperative echocardiograms and ECGs of children with ATH-SRBD who underwent adenotonsillectomy were compared to those of controls. Available postoperative ECGs and echocardiograms were also analyzed. RESULTS: Preoperatively, prolonged maximum P-wave duration (Pmax) and P-wave dispersion (PWD), decreased PLRAS, and increased tricuspid annulus E/E' were found in children with ATH-SRBD compared to those of controls. From the receiver operating characteristic curves, PLRAS was not inferior compared to tricuspid annulus E/E', Pmax, and PWD in differentiating children with ATH-SRBD from controls; however, the discriminative abilities of all four parameters were poor. In children who underwent adenotonsillectomy, echocardiograms $1.2{\pm}0.4$ years after adenotonsillectomy showed no difference in postoperative PLRAS and tricuspid annulus E/E' when compared with those of the preoperative period. CONCLUSIONS: Impaired RA deformation was reflected as decreased PLRAS in children with ATH-SRBD before adenotonsillectomy. Decreased PLRAS in these children may indicate subtle RV dysfunction and increased proarrhythmic risk. However, usefulness of PLRAS as an individual parameter in differentiating preoperative children with ATH-SRBD from controls was limited, similar to those of tricuspid annulus E/E', Pmax, and PWD.

Evaluation of Nonlinear Seismic Response of RC Shear Wall in Nuclear Reactor Containment Building (원자로건물의 철근콘크리트 전단벽 비선형 지진응답 평가)

  • Kim, Dae Hee;Lee, Kyung Koo;Koo, Ji Mo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.385-392
    • /
    • 2021
  • Interest in the seismic performance of nuclear facilities under strong earthquakes has increased because their nonlinear response is important. In this paper, we proposed appropriate parameters for the nonlinear finite element analysis of a concrete material model, for a reinforced concrete (RC) shear wall in nuclear facilities: maximum tensile strength, dilation angle, and damage parameter. The study of the effects of the important parameters, on the nonlinear behavior and shear failure mode of the RC shear wall having low aspect ratio, was conducted using ABAQUS finite element analysis program. Based on the study results the nonlinear response of a nuclear reactor containment building (RCB) subjected to a strong earthquake was evaluated using nonlinear time-history analysis.

An Ensemble Approach to Detect Fake News Spreaders on Twitter

  • Sarwar, Muhammad Nabeel;UlAmin, Riaz;Jabeen, Sidra
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.294-302
    • /
    • 2022
  • Detection of fake news is a complex and a challenging task. Generation of fake news is very hard to stop, only steps to control its circulation may help in minimizing its impacts. Humans tend to believe in misleading false information. Researcher started with social media sites to categorize in terms of real or fake news. False information misleads any individual or an organization that may cause of big failure and any financial loss. Automatic system for detection of false information circulating on social media is an emerging area of research. It is gaining attention of both industry and academia since US presidential elections 2016. Fake news has negative and severe effects on individuals and organizations elongating its hostile effects on the society. Prediction of fake news in timely manner is important. This research focuses on detection of fake news spreaders. In this context, overall, 6 models are developed during this research, trained and tested with dataset of PAN 2020. Four approaches N-gram based; user statistics-based models are trained with different values of hyper parameters. Extensive grid search with cross validation is applied in each machine learning model. In N-gram based models, out of numerous machine learning models this research focused on better results yielding algorithms, assessed by deep reading of state-of-the-art related work in the field. For better accuracy, author aimed at developing models using Random Forest, Logistic Regression, SVM, and XGBoost. All four machine learning algorithms were trained with cross validated grid search hyper parameters. Advantages of this research over previous work is user statistics-based model and then ensemble learning model. Which were designed in a way to help classifying Twitter users as fake news spreader or not with highest reliability. User statistical model used 17 features, on the basis of which it categorized a Twitter user as malicious. New dataset based on predictions of machine learning models was constructed. And then Three techniques of simple mean, logistic regression and random forest in combination with ensemble model is applied. Logistic regression combined in ensemble model gave best training and testing results, achieving an accuracy of 72%.

Influence of loading method and stiffening on the behavior of short and long CFST columns

  • Shaker, Fattouh M.F.;Ghanem, Gouda M.;Deifalla, Ahmed F.;Hussein, Ibrahim S.;Fawzy, Mona M.
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.295-307
    • /
    • 2022
  • The objective of this research is to study experimentally the behavior of stiffened steel tubes (CFSTs). Considered parameters are stiffening methods by through-bolts or shear connectors with different configurations. In addition, the effect of global (ratio between length to diameter) and local (proportion between diameter to thickness) slenderness ratios are investigated. Load application either applied on steel only or both steel and concrete is studied as well. Case of loading on steel only happens when concrete inside the column shrinks. The purpose of the research is to improve the behavior of CFSTs by load transfer between them and different stiffening methods. A parametric experimental study that incorporates thirty-three specimens is carried out to highlight the impact of those parameters. Different outputs are recorded for every specimen such as load capacities, vertical deflections, longitudinal strains, and hoop strains. Two modes of failure occur, yielding and global buckling. Shear connectors and through-bolts improve the ultimate load by up to 5% for sections loaded at steel with different studied global slenderness and local slenderness equal 63.5. Meanwhile, shear connectors or through bolts increase the ultimate load by up to 6% for global slenderness up to 15.75 for sections loaded on composite with local slenderness equals 63.50. Recommendations for future design code development are outlined.

Effect of water distribution on shear strength of compacted loess

  • Kang-ze, Yuan;Wan-kui, Ni;Xiang-fei, Lu;Hai-man, Wang
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.519-527
    • /
    • 2022
  • Shear failure in soil is the primary cause of most geotechnical structure failures or instability. Soil water content is a significant factor affecting soil shear strength. In this study, the shear strength of samples with different water contents was tested. The shear strength, cohesion, and internal friction angle decreased with increasing water content. Based on the variation of cohesion and internal friction angle, the water content zone was divided into a high-water content zone and low-water content zone with a threshold water content of 15.05%. Cohesion and internal friction angle have a good linear relationship with water content in both zones. Environmental Scanning Electron Microscopy (ESEM) test presented that the aggregates size of the compacted loess gradually increases with increasing water content. Meanwhile, the clay in the compacted loess forms a matric that envelops around the surface of the aggregates and fills the inter-aggregates pores. A quantitative analysis of bound water and free water under different water contents using a nuclear magnetic resonance (NMR) test was carried out. The threshold water content between bound water and free water was slightly below the plastic limit, which is consistent with the results of shear strength parameters. Combined with the T2 distributions obtained by NMR, one can define a T2 relaxation time of 1.58 ms as the boundary point for bound water distribution without free water. Finally, the effects of bound water and free water on shear strength parameters were analyzed using linear regression analysis.

Experimental and numerical research on the behavior of steel-fiber-reinforced-concrete columns with GFRP rebars under axial loading

  • Iman Saffarian;Gholam Reza Atefatdoost;Seyed Abbas Hosseini;Leila Shahryari
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.399-415
    • /
    • 2023
  • This paper presents the experimental and numerical evaluations on the circular SFRC columns reinforced GFRP rebars under the axial compressive loading. The test programs were designed to inquire and compare the effects of different parameters on the columns' structural behavior by performing experiments and finite element modeling. The research variables were conventional concrete (CC), fiber concrete (FC), types of longitudinal steel/GFRP rebars, and different configurations of lateral rebars. A total of 16 specimens were manufactured and categorized into four groups based on different rebar-concrete arrangements including GRCC, GRFC, SRCC, and SRFC. Adding steel fibers (SFs) into the concrete, it was essential to modify the concrete damage plastic (CDP) model for FC columns presented in the finite element method (FEM) using ABAQUS 6.14 software. Failure modes of the columns were similar and results of peak loads and corresponding deflections of compression columns showed a suitable agreement in tests and numerical analysis. The behavior of GFRP-RC and steel-RC columns was relatively linear in the pre-peak branch, up to 80-85% of their ultimate axial compressive loads. The axial compressive loads of GRCC and GRFC columns were averagely 80.5% and 83.6% of axial compressive loads of SRCC and SRFC columns. Also, DIs of GRCC and GRFC columns were 7.4% and 12.9% higher than those of SRCC and SRFC columns. Partially, using SFs compensated up to 3.1%, the reduction of the compressive strength of the GFRP-RC columns as compared with the steel-RC columns. The effective parameters on increasing the DIs of columns were higher volumetric ratios (up to 12%), using SFs into concrete (up to 6.6%), and spiral (up to 5.5%). The results depicted that GFRP-RC columns had higher DIs and lower peak loads compared with steel-RC columns.

A Study on the Probabilistic Stability Analysis of Slopes (확률론적 사면안정 해석기법에 관한 연구)

  • Kim, Ki-Young;Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.101-111
    • /
    • 2006
  • Slope stability analysis is a geotechnical engineering problem characterized by many sources of uncertainty. Some of them are connected to the variability of soil properties involved in the analysis. In this paper, a numerical procedure of probabilistic analysis of slope stability is presented based on Spencer's method of slices. The deterministic analysis is extended to a probabilistic approach that accounts fur the uncertainties and spatial variation of the soil parameters. The procedure is based on the first-order reliability method to compute the Hasofer-Lind reliability index and Monte-Carlo Simulation. A probabilistic stability assessment was performed to obtain the variation of failure probability with the variation of soil parameters in homogeneous and layered slopes as an example. The examples give insight into the application of uncertainty treatment to the slope stability and show the impact of the spatial variability of soil properties on the outcome of a probabilistic assessment.

Estimation of Pile Tension Loads Induced by Excavation in Singapore Soft Clay Applying a Pile-Plugged Jet Grouted Slab (말뚝-그라우트 슬라브가 적용된 싱가포르 연약지반 굴착 시 말뚝 인장력 산정에 관한 연구)

  • Lee, Seung-Rae;Park, Hyun-Ku;Shim, Jai-Beom;Lim, Seok-San;Shin, Kang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.9
    • /
    • pp.77-92
    • /
    • 2009
  • In the present paper, a numerical study was carried out for a reasonable and realistic evaluation of tension loads in piles during deep excavation in Singapore soft soil applying pile-plugged jet grouted slab. Based on 2-dimensional finite element analyses using linear elastic-perfectly plastic soil model obeying Mohr-Coulomb failure criterion, effects of pile-plugged jet grouted slab on the stability during excavation were examined, and a parametric study was also conducted to investigate critical influencing parameters in the estimation of reliable pile tension loads. Finally, based on the Modified Cam-Clay model, pile tension loads were estimated by considering on-going consolidation state of the Singapore clay deposit and the range of critical parameters observed during laboratory tests.

The socket shield technique and its complications, implant survival rate, and clinical outcomes: a systematic review

  • Stefano Oliva;Mario Capogreco;Giovanna Murmura;Ettore Lupi;Di Carlo Mariachiara;Maurizio D'Amario
    • Journal of Periodontal and Implant Science
    • /
    • v.53 no.2
    • /
    • pp.99-109
    • /
    • 2023
  • Purpose: The aim of this systematic review was to evaluate the effectiveness of the socket shield technique (SST), an innovative surgical method introduced in 2010, for reducing buccal bone plate resorption. Methods: The review was conducted following the PRISMA guidelines. Clinical studies conducted in humans and investigating the SST were searched on PubMed (MEDLINE), Embase, Web of Knowledge, and Google Scholar in November and December 2021. The implant survival rate, percentage of complications, and clinical parameters (marginal bone loss [MBL], pink esthetic score [PES], and buccal bone plate resorption [BBPR]) were analyzed using the collected data. Results: The initial search resulted in 132 articles. After article screening, the full texts of 19 studies were read and 17 articles were finally included in the review. In total, 656 implants were installed with the SST. Nine of the 656 implants experienced failure, resulting in an implant survival rate of 98.6%. The percentage of complications was about 3.81%. The analysis of clinical parameters (MBL, PES, and BBPR), showed favorable results for the SST. The mean MBL in implants placed with the SST was 0.39±0.28 mm versus 1.00±0.55 mm in those placed without the SST. PES had a better outcome in the SST group, with an average of 12.08±1.18 versus 10.77±0.74. BBPR had more favorable results in implants placed with the SST (0.32±0.10 mm) than in implants placed with the standard technique (1.05±0.18 mm). Conclusions: The SST could be considered beneficial for preserving the buccal bone plate. However, since only 7 of the included studies were long-term randomized controlled trials comparing the SST with the standard implant placement technique, the conclusions drawn from this systematic review should be interpreted with caution.

Reliability Analysis of Composite Girder Designed by LRFD Method for Positive Flexure (하중저항계수설계법(LRFD)으로 설계된 강합성 거더의 휨에 대한 신뢰도해석)

  • Shin, Dong-Ku;Kim, Cheon-Yong;Paik, In-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.539-546
    • /
    • 2006
  • The reliability analysis of simply-supported composite plate girder and box girder bridges under positive flexure is performed. The bridges are designed based on the AASHTO-LRFD specification. A performance function for flexural failure is expressed as a function of such random variables as flexural resistance of composite section and design moments due to permanent load and live load. For the flexural resistance, the statistical parameters obtained by analyzing over 16,000 samples of domestic structural steel products are used. Several different values of statistical parameters with the bias factor in the range of 0.95-1.05 and the coefficient of variation in the range of 0.15-0.25 are used for the live-load moment. Due to the lack of available domestic measured data on the dead load moment, the same values of statistical properties used in the calibration of AASHTO-LRFD are applied. The reliability indices for the composite plate girder and box girder bridges with various span lengths are calculated by applying the Rackwitz-Fiessler technique.