• Title/Summary/Keyword: failure parameters

Search Result 1,945, Processing Time 0.027 seconds

Analysis for the Coolability of the Reactor Cavity in a Korean 1000 MWe PWR Using MELCOR 1.8.3 Computer Code

  • Lee, Byung-Chul;Kim, Ju-Yeul;Chung, Chang-Hyun;Park, Soo-Yong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.669-674
    • /
    • 1996
  • The analysis for the coolability of the reactor cavity in typical Korean 1000 MWe Nuclear Unit under severe accidents is performed using MELCOR 1.8.3 code. The key parameters molten core-concrete interaction(MCCI) such as melt temperature, concrete ablation history and gas generation are investigated. Total twenty cases are selected according to ejected debris fraction and coolant mass, The ablation rate of concrete decreases as mass of the melt decreases and coolant mass increases. Heat loss from molten pool to coolant is comparable to total decay heat, so concrete ablation is delayed until water is absent and crust begins to remove. Also, overpressurization due to non-condensible gases generated during corium and concrete interacts can cause to additional risk of containment failure. It is concluded that flooded reactor cavity condition is very important to minimize the cavity ablation and pressure load by non-condensible gases on containment.

  • PDF

Estimation of Damage Condition for the Automobile Transmission Gear by Morphological Analysis of Wear Debris (마멸입자 형태분석에 의한 자동차 트랜스미션 기어의 손상상태 평가)

  • 박흥식;조연상;배효준;이상재
    • Tribology and Lubricants
    • /
    • v.17 no.1
    • /
    • pp.16-21
    • /
    • 2001
  • The wear particles is released from the moving surfaces in gear systems of transmission and its morphology is directly related to the damage and failure to gear system from which the particles originated. It is the effective method for damage condition estimation of automobile transmission gear to observe wear debris in gear oil. We tested with new transmission and took out gear oil according to driving distance. To be applied to damage condition of gear system in transmission of automobile,4 shape parameters of wear particles in gear oil were calculated and wear volume were presumed with the image processing system.

A Study on Warm Incremental Forming of AZ31 Alloy Sheet (AZ31 합금 판재의 온간 점진 성형에 관한 연구)

  • Kim, S.W.;Lee, Y.S.;Kwon, Y.N.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.17 no.5
    • /
    • pp.373-379
    • /
    • 2008
  • A fundamental study on warm incremental forming of a magnesium alloy sheet has been carried out. In order to enhance the incremental formability of the magnesium alloy sheet, a local heating device was newly designed and manufactured. Through the incremental forming tests of AZ31 under various forming conditions, the effects of process parameters such as the temperature, feeding depth per cycle, and inclination angle on the incremental formability of AZ31 were investigated. In addition, conventional FLDs at elevated temperatures were constructed experimentally and applied to predict the forming failure.

Generalized half-logistic Poisson distributions

  • Muhammad, Mustapha
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.4
    • /
    • pp.353-365
    • /
    • 2017
  • In this article, we proposed a new three-parameter distribution called generalized half-logistic Poisson distribution with a failure rate function that can be increasing, decreasing or upside-down bathtub-shaped depending on its parameters. The new model extends the half-logistic Poisson distribution and has exponentiated half-logistic as its limiting distribution. A comprehensive mathematical and statistical treatment of the new distribution is provided. We provide an explicit expression for the $r^{th}$ moment, moment generating function, Shannon entropy and $R{\acute{e}}nyi$ entropy. The model parameter estimation was conducted via a maximum likelihood method; in addition, the existence and uniqueness of maximum likelihood estimations are analyzed under potential conditions. Finally, an application of the new distribution to a real dataset shows the flexibility and potentiality of the proposed distribution.

An experimental study on Bond strength of Reinforcing steel to High-performance Concrete using Belite Cement (Belite 시멘트를 이용한 고성능 콘크리트의 철근 부착성능 실험연구)

  • 조필규;김상준;강지훈;김영식;최완철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.408-415
    • /
    • 1997
  • Bond strength of reinforcing bar to high-performance concrete using Belite cement is explored using beam end test specimen. The key parameters for the bond test are slump of concrete, top bar effect, and strength of concrete in addition to concrete covers. Specimen failed in the typical brittle bond failure splitting the concrete cover as the wedging action. The test results show that for the group with portland cement I using superplasticizer additional slump does not decrease the bond strength of the top bar is less than bond strength of bottom bar, but the top bar factor satisfy the modification factor for top reinforcement. The result also show that bond strength is function of square root of concrete compressive strength and cover thickness. More detailed evaluation will be conducted from the test specimen with high strength concrete using the belite cement.

  • PDF

An Experimental Study on the Rehabilitation Technics of R/C Flexural Member (철근콘크리트보의 휨내력보강 공법에 관한 실험적 연구)

  • Kim, Sung-Chul;Lee, Hee-Kyoung;Yoo, Seong-Hoon;Kim, Joong-Koo;Chung, Lan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.10a
    • /
    • pp.715-720
    • /
    • 1997
  • In this study, the behavior of R/C beam strengthened with carbon fiber laminate(C.F.L) is analyzed from the test results. Test parameters ar the width and the thickness of C.F.L. The failure mode and ultimate load are analyzed from these measured data. Test results shows that the peak load of specimens strengthened with C.F.L. is increased to 1.27~2.04 times of that of non-rehabilitation specimen. The wider lap width, large amount of rehabilitation materials, the larger strength is obtained.

  • PDF

Flexural Behavior of Slab Repaired and Rehabilitated with Strand and Polymer Mortar (강연선과 폴리머 모르터에 의해 보수ㆍ보강된 슬래브의 휨거동 특성)

  • 황정호;양동석;박선규;엄준식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.1007-1012
    • /
    • 2003
  • With deterioration of the nation's infrastructure comes the growing, need for effective means of rehabilitating structures. Possibly one for the most challenging tasks is to upgrade the overall capacity of concrete structure. This study focused on the flexural behavior of reinforced concrete slabs strengthened by PS strand and polymer mortar in the tension zone. The properties of slabs are 70×12㎝ rectangular and over a 220㎝ span. Test parameters in this experimental study were placing thickness, chipping, the number of strand, the kind of mortar. Attention is concentrated upon overall bending capacity, deflection, ductility index, failure mode and crack development of repaired and rehabilitated slabs.

  • PDF

Modeling and Simulation of Loss of Excitation of Hydro Generator Control System (수력 발전기 제어시스템의 계자상실 모델링과 시뮬레이션)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.2
    • /
    • pp.74-80
    • /
    • 2014
  • Generator protection device has to detects an internal fault conditions in generator and abnormal operating conditions must be due to the hazards. Loss of excitation may cause generator itself failure as well as serious operating problem in power system, and then requires an appropriate response of generator protection device. Details modeling of generator control system and analysis of transient states in generator are important for optimal operation in power plants. In addition, the fault simulation data are also used for testing the characteristics of IED. In this paper, the hydro generator control system using PSCAD/EMTDC, visual simulation for power systems, was modeled. The generator control system which is composed of generator, turbine, exciter, governor was implemented. The parameters of generator control system model were obtained from field power plant. Loss of excitation simulations were performed while varying the fixed load. Several signals analysis were also performed so as to analyze transients phenomena.

Ultimate load behaviour of tapered steel plate girders

  • Shanmugam, N.E.;Min, Hu
    • Steel and Composite Structures
    • /
    • v.7 no.6
    • /
    • pp.469-486
    • /
    • 2007
  • The paper is concerned with the behavior of tapered steel plate girders, primarily subjected to shear loading; experimental as well as finite element results obtained from the studies are presented in this paper. In the experimental study, 11 large-scale girders, one of uniform section and 10 tapered, were tested to failure and all girders were analysed by finite element method. The results are compared and the accuracy of the finite element modeling established. A parametric study was carried out with thickness of web, loading direction and taper angle as parameters. An analytical model, based on Cardiff model for girders of uniform cross-section, is also proposed in the paper.

Investigating loading rate and fibre densities influence on SRG - concrete bond behaviour

  • Jahangir, Hashem;Esfahani, Mohammad Reza
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.877-889
    • /
    • 2020
  • This work features the outcomes of an empirical investigation into the characteristics of steel reinforced grout (SRG) composite - concrete interfaces. The parameters varied were loading rate, densities of steel fibres and types of load displacement responses or measurements (slip and machine grips). The following observations and results were derived from standard single-lap shear tests. Interfacial debonding of SRG - concrete joints is a function of both fracture of matrix along the bond interface and slippage of fibre. A change in the loading rate results in a variation in peak load (Pmax) and the correlative stress (σmax), slip and machine grips readings at measured peak load. Further analysis of load responses revealed that the behaviour of load responses is shaped by loading rate, fibre density as well as load response measurement variable. Notably, the out-of-plane displacement at peak load increased with increments in load rates and were independent of specimen fibre densities.