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Abstract
In this article, we proposed a new three-parameter distribution called generalized half-logistic Poisson distri-

bution with a failure rate function that can be increasing, decreasing or upside-down bathtub-shaped depending on
its parameters. The new model extends the half-logistic Poisson distribution and has exponentiated half-logistic
as its limiting distribution. A comprehensive mathematical and statistical treatment of the new distribution is pro-
vided. We provide an explicit expression for the rth moment, moment generating function, Shannon entropy and
Rényi entropy. The model parameter estimation was conducted via a maximum likelihood method; in addition,
the existence and uniqueness of maximum likelihood estimations are analyzed under potential conditions. Fi-
nally, an application of the new distribution to a real dataset shows the flexibility and potentiality of the proposed
distribution.

Keywords: half-logistic Poisson, moments, entropy, maximum likelihood estimates

1. Introduction

Lifetime data may exhibit a decreasing, increasing, or a bathtub failure rate function when modeling
and analyzing random phenomena. This arises in several areas of studies, such as biomedical stud-
ies, reliability, actuarial science, computer science, demography, and engineering. There are several
lifetime models that have been used successfully for to analyze lifetime data in practical applications
such as exponential, Weibull, Gompertz, generalized exponential, and half-logistic. For example, ex-
ponential distribution can accommodate lifetime data with a decreasing density despite having only a
constant failure rate function. Gompertz distribution has a decreasing and unimodal density but has
an increasing failure rate function. However, these distributions are unable to accommodate lifetime
data with a non-monotone failure rate such as the bathtub or upside-down bathtub. Many researchers
have attempted to provide several methods to generate new lifetime models with the ability to fit data
with monotone or non-monotone failure rate to overcome these problems. These methods include the
generalization of a distribution by exponentiation procedure.

Method of exponentiation is an of the important and commonly used techniques to add a parame-
ter to a lifetime model, the new model becomes more flexible and can accommodate both monotones
as well as non-monotone failure rate functions. For example, Kuş (2007) proposed en exponential
Poisson (EP) distribution that possesses a decreasing failure rate function; however, Barreto-Souza
and Cribari-Neto (2009) proposed generalized exponential Poisson (GEP) by exponentiation of the
EP. The GEP distribution can accommodate decreasing, increasing and upside down bathtub failure
rates. Similarly, Adamidis and Loukas (1998) introduced exponential geometric distribution, while
Silva et al. (2010) come up with the generalized exponential geometric distribution. Tahmasbi and
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Rezaei (2008) introduced exponential-logarithmic distribution similarly, Pappas et al. (2015) pro-
posed a generalized exponential-logarithmic. Silva and Cordeiro (2015) introduced a new class of
distribution called the BurrXII Poisson distribution and recently Muhammad (2016a) proposed gen-
eralized BurrXII Poisson distribution. To read more about exponentiated distributions see Ali et al.
(2007) and Raja and Mir (2011). A new two-parameter distribution known as the half-logistic Pois-
son (HLP) distribution was also introduced by Muhammad and Yahaya (2017) using the procedure
followed by Kuş (2007) and Chung and Kang (2014).

The cumulative distribution function (cdf) of the HLP distribution is given by

G(x) =

1 − e−λ
(

1−e−αx
1+e−αx

)
1 − e−λ

 , (1.1)

with x > 0, α > 0, and λ > 0. The HLP distribution can accommodate data with increasing or
decreasing hazard functions.

The first motivation of this study is to propose a new three-parameter probability distribution with
increasing, decreasing and upside down bathtub-shaped failure functions. The second motivation
of this study is to find the association of the density functions and hazard rate functions in practical
applications. Last, we are motivated because the exponentiation method provides additional flexibility
to a model especially in both the density and failure rate functions. The HLP distribution cannot fit
data set with non-monotone failure rate functions; therefore, we hope that the new distribution that
is the generalized half-logistic Poisson (GHLP) will provide solutions to many problems in various
fields in practical applications.

The rest of the paper is arranged as follows, in Section 2 we provide the density of the GHLP and
consider some important mathematical and statistical properties. Section 3 discusses the maximum
likelihood estimate (MLE) and a simulation study. Section 4 provides applications of the new model
to a real data set Section 5 provides the conclusions.

2. The proposed model

The cumulative distribution function of the GHLP distribution with parameters α, β, λ > 0 is given by

F(x) =
(
1 − e−λ

(
1−e−αx
1+e−αx

))β (
1 − e−λ

)−β
, (2.1)

where the corresponding probability density and hazard rate functions are given by

f (x) =
2αβλe−αx

(1 − e−λ)β(1 + e−αx)2

(
1 − e−λ

(
1−e−αx
1+e−αx

))β−1
e−λ

(
1−e−αx
1+e−αx

)
, (2.2)

h(x) =
2α βλ e−αx

(
1 − e−λ

(
1−e−αx
1+e−αx

))β−1
e−λ

(
1−e−αx
1+e−αx

)

(1 + e−αx)2

(
(1 − e−λ)β −

(
1 − e−λ

(
1−e−αx
1+e−αx

))β) , (2.3)

respectively. The limiting distribution given by (2.1) when λ → 0+ is limλ →0+ F(x) = ((1 − e−αx)/
(1 + e−αx))β for β > 0, which is the cdf of the exponentiated half-logistic distribution.

Theorem 1. The probability density function (pdf) given by (2.2) is decreasing function for β ≤ 1.
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Figure 1: Plots of the probability density function and hazard function of the generalized half-logistic Poisson
for different values of parameters.

Proof: We obtained the first derivative of log f (x) as

∂ log f (x)
∂x

= −α − 2α e−αx

1 − e−αx +
2αλ(β − 1) e−αxe−λ

(
1−e−αx
1+e−αx

)
(1 + e−αx)2

(
1 − e−λ

(
1−e−αx
1+e−αx

)) − 2αλ e−αx

(1 + e−αx)2 , (2.4)

thus, for β ≤ 1, log f ′(x) < 0. �

Figure 1 below provide the plot of the pdf ( f (x)) of the GHLP and illustrated that the pdf can be
unimodal function for β > 1.

The limiting behavior of the pdf given by (2.2) are: for β < 1, limx →0 f (x) = ∞; for β = 1,
limx →0 f (x) = αλ/{2(1 − e−λ)}; for β > 1, limx →0 f (x) = 0 and limx →∞ f (x) = 0 for all β > 0.
The limiting behavior of the hazard rate function given by (2.3) are: for β < 1, limx →0 h(x) = ∞; for
β = 1, limx →0 h(x) = αλ/{2(1 − e−λ)} and for β > 1, limx →0 h(x) = 0. Figure 1 below shows that
the hazard rate function (h(x)) of the GHLP given by (2.3) can be decreasing, increasing or unimodal
functions.

The pth-quantile function of the GHLP can easily be derived by inverting (2.1) as

ξ(p) = −α−1 log


λ + log

(
1 − p

1
β

(
1 − e−λ

))
λ − log

(
1 − p

1
β
(
1 − e−λ

))
 , (2.5)

therefore, we can find the numerical values of the median and other percentiles of X with (2.5), also
the median of X can be obtained as ξ(0.5). Moreover, equation (2.5) can be used to generate random
data distributed GHLP(α, β, λ) by setting p ∼ U(0, 1), where U(0, 1) is the uniform distribution.

2.1. Moments

Here, we provide the following lemma which is very useful in computations of several important
properties of the GHLP. first we recall that, Bkd(a, b) = (∂k+dB(a, b))/(∂ak∂bd) for k+a > 0, b+d > 0,
where B(a, b) =

∫ 1
0 ua−1(1 − u)b−1du is a beta function.
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Table 1: Numerical values of J( ȷ1, ȷ2, ȷ3, ȷ4, ȷ5, ȷ6) for some values of ȷ1, ȷ2, ȷ3, ȷ4, ȷ5, and ȷ6

ȷ1 ȷ2 ȷ3 ȷ4 ȷ5 ȷ6 J( ȷ1, ȷ2, ȷ3, ȷ4, ȷ5, ȷ6) ȷ1 ȷ2 ȷ3 ȷ4 ȷ5 ȷ6 J( ȷ1, ȷ2, ȷ3, ȷ4, ȷ5, ȷ6)
0.5 1.2 2.1 2.3 0.6 3.0 0.01595 0.5 0.2 0.1 0.3 0.6 0.3 7.24441
0.6 2.2 1.1 4.3 3.6 1.3 0.00392 0.1 2.2 4.1 3.3 3.6 1.5 0.00065
3.0 2.0 4.1 3.3 6.0 5.0 0.00150 1.0 6.0 1.0 3.0 2.0 1.0 0.00024
1.0 1.0 1.0 1.0 1.0 1.0 0.23417 1.5 1.0 1.0 2.5 1.0 0.5 0.34307
1.5 7.0 1.0 2.5 1.0 1.5 0.00018 10 2.0 2.0 5.0 1.0 5.0 14.2023
10 2.0 12 5.0 11 15 0.00123 8.0 5.0 2.0 1.0 9.0 1.0 0.00240
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V
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Figure 2: Plots of the mean and variance of generalized half-logistic Poisson for α = 1.5.

Lemma 1. For ȷn, n = 1, 2, . . . , 6, and ȷn ∈ R, let,

J( ȷ1, ȷ2, ȷ3, ȷ4, ȷ5, ȷ6) =
∫ ∞

0

x ȷ1 e− ȷ2 x (1 − e−αx) ȷ3

(1 + e−αx) ȷ4

(
1 − e−λ

(
1−e−αx
1+e−αx

)) ȷ5
e− ȷ6

(
1−e−αx
1+e−αx

)
dx, (2.6)

then,

J( ȷ1, ȷ2, ȷ3, ȷ4, ȷ5, ȷ6) =
∞∑

i=0

∞∑
k,l=0

ξi,k,l B0 ȷ1

(
ȷ3 + k + 1,

ȷ2
α
+ l

)
, (2.7)

where ξi,k,l =
(
ȷ5
i

)(−( ȷ4+k)
l

)
{(−1)i+k+ ȷ1 (λi + ȷ6)k}/{α ȷ1+1k!}.

Proof: See Appendix A. �

Table 1 provide some numerical values of J( ȷ1, ȷ2, ȷ3, ȷ4, ȷ5, ȷ6) for some various parameter values
computed using R software.

Various characteristics and features of a distribution can be analyzed through its moments such as
mean, variance, moment generating function, etc. If X follows the GHLP distribution, then, the rth

moment of X can be obtained by considering Lemma 1 as follows:

E(Xr) =
2αβλ

(1 − e−λ)β

∫ ∞

0

xr e−αx

(1 + e−αx)2

(
1 − e−λ

(
1−e−αx
1+e−αx

))β−1
e−λ

(
1−e−αx
1+e−αx

)
dx, (2.8)

thus,

E(Xr) =
2αβλ

(1 − e−λ)β
J(r, α, 0, 2, β − 1, λ). (2.9)

Therefore, the moments of GHLP can easily be computed using mathematical software such as MAT-
LAB, MATHEMATICA, and R. Figure 2 provide the plots of the mean µ and variance σ2 of the GHLP



Generalized half logistic Poisson distributions 357

beta
lambda

S
kew

ness

beta
lambda

K
urtosis

Figure 3: Plots of the skewness and kurtosis of generalized half-logistic Poisson for α = 0.5.

for α = 1.5, it is clear that both the mean and variance are increasing as β increases and decreasing as
λ increases.

The moment generating function of the GHLP distribution can be computed directly using MX(t) =
E(etX) which can be expanded to

MX(t) =
∞∑

r=0

tr

r!
E(Xr), (2.10)

thus, by putting (2.9) in (2.11) we have

MX(t) =
∞∑

r=0

2αβλtr

(1 − e−λ)β r!
J(r, α, 0, 2, β − 1, λ). (2.11)

One of the alternative measures for the skewness and kurtosis of a distribution are the Bowley skew-
ness (B) and Moor’s kurtosis (M) defined by B = [ξ(3/4) + ξ(1/4) − 2 ξ(2/4)]/[ξ(3/4) − ξ(1/4)] and
M = [ξ(3/8) − ξ(1/8) + ξ(7/8) − ξ(5/8)]/[ξ(6/8) − ξ(2/8)], respectively, where ξ(·) is given by (2.5).
Figure 3 is the plots of the Bowley skewness and Moor’s kurtosis of the GHLP for α > 0. It is clear
that both the skewness and kurtosis are decreasing in β and unimodal function in λ.

2.2. Entropy

Entropy is defined as a measure of uncertainty of a random variable. Here, we consider the two most
important entropies known as the Shannon and Rényi entropies. The Shannon entropy is defined
by E[− log f (x)]. For a random variable X with GHLP, the Shannon entropy can be computed by
considering the Proposition 1 as follows.

Proposition 1. Let X be a random variable with pdf given by (2.2), then,

E
(
log(1 + e−αX)

)
=

2αβλ
(1 − e−λ)β

∂

∂t
J(0, α, 0, 2 − t, β − 1, λ)|t=0, (2.12)

E
(
log

(
1 − e

−λ
(

1−e−αX

1+e−αX

)))
=

2αβλ
(1 − e−λ)β

∂

∂t
J(0, α, 0, 2, β + t − 1, λ)|t=0, (2.13)

E
(

1 − e−αX

1 + e−αX

)
=

2αβλ
(1 − e−λ)β

J(0, α, 1, 3, β − 1, λ). (2.14)

where J(·, ·, ·, ·, ·, ·) is given by (2.7).



358 Mustapha Muhammad

Hence,

E[− log f (X)] = − log
(

2αβλ
(1 − e−λ)β

)
+ αE(X) +

4αβλ
(1 − e−λ)β

∂

∂t
J(0, α, 0, 2 − t, β − 1, λ)|t=0

− 2αβλ(β−1)
(1 − e−λ)β

∂

∂t
J(0, α, 0, 2, β+t−1, λ)|t=0 +

2αβλ2

(1−e−λ)β
J(0, α, 1, 3, β−1, λ). (2.15)

The Rényi entropy of a random variable X is defined by IR(ρ) = 1/(1 − ρ)log[
∫ ∞

0 f (x)ρdx],where ρ > 0
and ρ , 1. The Rényi entropy of X that has GHLP is obtain as follows.∫ ∞

0
f ρ(x) dx =

∫ ∞

0

2ρ αρβρλρe−αρx e−λρ
(

1−e−αx
1+e−αx

)
(1 − e−λ)βρ(1 + e−αx)2ρ

(
1 − e−λ

(
1−e−αx
1+e−αx

))ρ(β−1)
dx, (2.16)

by applying Lemma 1 the integral become∫ ∞

0
f ρ(x) dx =

2ραρβρλρ

(1 − e−λ)βρ
J(0, αρ, 0, 2ρ, ρ(β − 1), λρ). (2.17)

Hence, the Rényi entropy of X is

IR(ρ) =
1

1 − ρ log
[

2ραρβρλρ

(1 − e−λ)βρ
J(0, αρ, 0, 2ρ, ρ(β − 1), λρ)

]
. (2.18)

3. Estimation

In this section, we discuss MLEs, one of the most popular and common methods used in inference. In
this method the approximate MLEs are obtained either analytically or numerically using some math-
ematical packages. Let Xi (i = 1, 2, . . . , n) be a random sample of size n from the GHLP distribution
with observed values x1, x2, x3, . . . , xn. The log likelihood function, i.e. log ℓ(θ) for complete data set
of the GHLP distribution is given by

log ℓ(θ) = n log 2 + n logα + n log β + n log λ − nβ log(1 − e−λ) − α
n∑

i=1

xi

− 2
n∑

i=1

log(1 + e−αxi ) + (β − 1)
n∑

i=1

log
(
1 − e−λ

(
1−e−αxi
1+e−αxi

))
− λ

n∑
i=1

(
1 − e−αxi

1 + e−αxi

)
. (3.1)

Hence, the MLEs of θ = (α, β, λ)T , say θ̂ = (α̂, β̂, λ̂)T is the solution of the nonlinear equations
(3.2)–(3.4).

∂ℓ

∂α
=

n
α
−

n∑
i=1

xi −
n∑

i=1

2xi e−αxi

1 + e−αxi
+

n∑
i=1

2(β − 1)λ xie−αxi e−λ
(

1−e−αxi
1+e−αxi

)
(1 + e−αxi )2

(
1 − e−λ

(
1−e−αxi
1+e−αxi

)) − n∑
i=1

2λxi e−αxi

(1 + e−αxi )2 = 0, (3.2)

∂ℓ

∂β
=

n
β
− n log

(
1 − e−λ

)
+

n∑
i=1

log
(
1 − e−λ

(
1−e−αxi
1+e−αxi

))
= 0, (3.3)

∂ℓ

∂λ
=

n
λ
− nβe−λ

(1 − e−λ)
+ (β − 1)λ

n∑
i=1

(
1−e−αxi

1+e−αxi

)
e−λ

(
1−e−αxi
1+e−αxi

)
(
1 − e−λ

(
1−e−αxi
1+e−αxi

)) − n∑
i=1

(
1 − e−αxi

1 + e−αxi

)
= 0. (3.4)
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For the interval estimate and hypothesis tests of the parameters we required J(θ) the 3 × 3 Fisher
information matrix defined by J(θ) = −{∂2(log ℓ(θ))/∂θ∂θT }. The approximate of the MLEs of θ, the
θ̂, can be approximated as N3(0, J(θ̂)−1) under usual conditions for parameters in the interior of the
parameter space, but not on the boundary. The asymptotic distribution of

√
n(θ̂ − θ) is N3(0, J(θ̂)−1),

where J(θ̂) is the unit information matrix evaluated at θ̂, which can be used to construct the approxi-
mate confidence interval for each parameter. A 100(1 − ϵ)% asymptotic confidence interval for each
parameter θr is given by ACIr = (θ̂r − Zϵ/2

√
Îrr, θ̂r + Zϵ/2

√
Îrr), where Irr is the (r, r) diagonal element

of In(θ)−1 for r = 1, 2, 3 and Zϵ/2 is the quantile (1 − ϵ/2) of the standard normal distribution. The
elements of J(θ) can be obtained from the author under request. The existence and uniqueness of
MLEs of a probability models based on some certain sufficient conditions have been considered in
various literature by many researchers, the existence and uniqueness of maximum likelihood estima-
tors of the EP was analyzed by Kuş (2007), for the exponential geometric by Adamidis and Loukas
(1998), Generalized exponential-power series by Mahmoudi and Jafari (2012), extended exponential-
geometric by Adamidis at el. (2005), recently generalized BurrXII Poisson by Muhammad (2016a)
and the complementary exponentiated BurrXII-Poisson by Muhammad (2017) among others. The fol-
lowing theorems provide the existence and uniqueness of the MLEs of the GHLP under some possible
conditions with the proofs provided in Appendix B.

Theorem 2. Let g1(α; β, λ, xi) denote the function on the right hand side of the equation (3.2) where
β and λ are the true values of the parameters, then, the equation g1(α; β, λ, xi) = 0 has at least one
root for β , 1 and for β = 1 the root lies in the interval (n/{(2 + λ/2)

∑n
i=1 xi}, n/

∑n
i=1 xi).

Theorem 3. Let g2(β;α, λ, xi) denote the function on the right hand side of the equation (3.3) where
α and λ are the true values of the parameters, then, the equation g2(β;α, λ, xi) = 0 has at most one
root for log(1 − e−λ) > n−1 ∑n

i=1 log (1 − e−λ{(1−e−αxi )/(1+e−αxi ))} and is unique.

Theorem 4. Let g3(λ;α, β, xi) denote the function on the right hand side of the equation (3.4) where
α and β are the true values of the parameters, then, the equation g3(β;α, λ, xi) = 0 has at least one
root for β > 1/2 + (1/n)

∑n
i=1 {(1 − e−αxi )/(1 + e−αxi )}.

3.1. Simulation study

Here, we evaluate the performance of the MLEs given by equations (3.2)–(3.4) depending on sam-
ple size n for the GHLP distribution. In this process we generated 10,000 samples of size n =
20, 30, 40, 50, 100, and 150 from the GHLP distribution for some various values of α, β, and λ. MLEs
are obtained by solving the nonlinear equations (3.2)–(3.4) using mlninb in R. The MLEs of α̂, β̂, and
λ̂ and their standard deviations sd(α̂), sd(β̂), and sd(λ̂) of the parameters are given in Table 2 below.
The results show that each MLE converges to its true value in all cases when the sample size increases
and the standard deviations of the MLEs decrease as the sample size increases.

4. Real data illustration

In this section, we provide an application of the GHLP distribution to a real data set. We used the
Akaike information criterion (AIC), consistent Akaike information criterion (CAIC), and Kolmogorov-
Smirnov (K-S) test to compare the GHLP and some other existing distributions. The model with the
smallest values of these measures fit the data better than the other distributions. The competing distri-
butions are:

• The HLP distribution with cdf given by (1.1).
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Table 2: MLEs and standard deviations for some various values of parameters

Sample size Actual values Estimated values Standard deviations
n α β λ α̂ β̂ λ̂ sd(α̂) sd(β̂) sd(λ̂)

20

0.6 1.0 0.2 0.3484 0.6445 0.4752 0.2779 0.7451 1.0270
1.0 1.2 1.0 1.0751 1.4988 1.3013 0.3698 0.8655 1.4253
0.1 0.2 0.5 0.3826 0.1842 0.8930 0.3908 0.0778 6.1164
0.3 0.7 0.4 0.2615 0.6311 0.7950 0.1282 0.4109 3.7589
2.5 1.1 2.1 3.2405 1.2652 1.7064 1.2870 0.6377 4.2860
1.0 1.0 1.0 1.0914 1.2013 1.2527 0.3901 0.5492 1.3846
0.2 0.5 1.5 0.2606 0.5550 1.2747 0.1173 0.1842 3.9691

30

0.6 1.0 0.2 0.7988 0.6666 0.1397 0.2009 0.4976 0.5541
1.0 1.2 1.0 1.0318 1.3712 1.3004 0.3149 0.4991 1.3962
0.1 0.2 0.5 0.3446 0.1829 0.6371 0.3794 0.0691 2.8381
0.3 0.7 0.4 0.2514 0.6060 0.7650 0.1140 0.3707 3.4513
2.5 1.1 2.1 3.0149 1.1743 1.7622 1.0964 0.3927 2.9208
1.0 1.0 1.0 1.0466 1.1260 1.2523 0.3296 0.3831 1.3701
0.2 0.5 1.5 0.2446 0.5318 1.2913 0.0969 0.1363 1.3302

40

0.6 1.0 0.2 0.7948 0.6463 0.1307 0.1986 0.4601 0.5467
1.0 1.2 1.0 1.0128 1.3138 1.2735 0.2855 0.3892 1.3833
0.1 0.2 0.5 0.3207 0.1835 0.5788 0.3691 0.0661 2.0529
0.3 0.7 0.4 0.2505 0.5911 0.7099 0.1088 0.3443 2.5766
2.5 1.1 2.1 2.8909 1.1424 1.8507 1.0181 0.3141 1.5175
1.0 1.0 1.0 1.0285 1.0942 1.2641 0.3036 0.3070 1.3592
0.2 0.5 1.5 0.2326 0.5216 1.3513 0.0858 0.1104 1.3274

50

0.6 1.0 0.2 0.7946 0.6359 0.1269 0.1964 0.4450 0.5423
1.0 1.2 1.0 1.0037 0.6211 0.4066 0.1727 0.5680 1.0623
0.1 0.2 0.5 0.3088 0.1833 0.5842 0.3647 0.0649 1.2393
0.3 0.7 0.4 0.2477 0.5806 0.6368 0.1044 0.3362 1.6333
2.5 1.1 2.1 2.8522 1.1244 1.8733 0.9546 0.2751 1.5140
1.0 1.0 1.0 1.0144 1.0723 1.2502 0.2831 0.2647 1.3529
0.2 0.5 1.5 0.2270 0.5144 1.3846 0.0798 0.0969 1.3273

100

0.6 1.0 0.2 0.7941 0.6112 0.0926 0.1912 0.4106 0.4077
1.0 1.2 1.0 0.9978 0.6444 0.3096 0.1346 0.4431 0.8330
0.1 0.2 0.5 0.3016 0.1764 0.5559 0.3691 0.0669 0.6401
0.3 0.7 0.4 0.2461 0.5641 0.5677 0.0952 0.3104 1.3488
2.5 1.1 2.1 2.6656 1.1021 2.0777 0.8103 0.1869 1.5002
1.0 1.0 1.0 0.9895 1.0286 1.2264 0.2363 0.1790 1.2841
0.2 0.5 1.5 0.1559 0.2888 0.6507 0.0743 0.2057 1.1702

150

0.6 1.0 0.2 0.7960 0.6006 0.0718 0.1882 0.3997 0.3421
1.0 1.2 1.0 0.9969 0.6429 0.3005 0.1213 0.4317 0.8044
0.1 0.2 0.5 0.3456 0.1667 0.4991 0.3974 0.0720 0.5946
0.3 0.7 0.4 0.2470 0.5562 0.4975 0.0921 0.3005 0.8660
2.5 1.1 2.1 2.5933 1.0939 2.1501 0.7259 0.1521 1.4292
1.0 1.0 1.0 0.9887 1.0200 1.1904 0.2093 0.1483 1.1919
0.2 0.5 1.5 0.1514 0.2810 0.6537 0.0689 0.2018 1.1586

• Olapade-generalized half-logistic by Olapade (2014) with F(x) = 1 − (2β(1 + ex/α)−β).

• Power-half-logistic by Krishnarani (2016) with F(x) = 1 − 2(1 + eαxβ)−1.

• The generalized half-logistic with F(x) = (1 − e−αx)β(1 + e−αx)−β. The distribution appears in the
study of its estimation procedures by Arora et al. (2010), Kang and Seo (2011), Seo et al. (2012,
2013), and Kantam et al. (2013), where some of its important properties such as the rth-moments,
probability weighted moments, and Shannon and Rényi entropies can be obtained from Cordeiro et
al. (2014).



Generalized half logistic Poisson distributions 361

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

4
0.

8

i/n

T
(i/

n)

Figure 4: TTT-plot for the remission times (in months) data. TTT = total time on test.

Table 3: MLEs, ℓ(θ), AIC, CAIC, K-S and p-value for the remission times (in months) of bladder cancer
patients.

Model α β λ ℓ(θ) AIC CAIC K-S p-value
GHLP 0.0642 1.3909 4.4696 −410.24 826.48 820.53 0.0427 0.9737
OGHL 0.9217 0.1250 - −412.18 828.36 824.40 0.0661 0.6304
PwHL 0.8880 0.2015 - −415.10 834.19 830.22 0.0751 0.4652
HLP 0.0574 - 3.8836 −413.17 830.34 826.37 0.0963 0.1863
PHL 0.8880 - 0.2015 −415.10 834.19 830.22 0.0761 0.4489
GHL 0.1440 0.9527 - −416.64 837.27 833.30 0.0950 0.1994
GE 0.1212 1.2180 - −413.08 830.16 826.19 0.0725 0.5113
EP 0.3341 − 4.3342 −417.04 835.61 831.64 0.9533 0.0000
POEU 1.5503 100 6.7528 −415.15 834.30 830.33 0.0808 0.3742
NH 0.3341 - 4.3342 −417.04 838.09 820.53 0.5709 0.0000
HL 0.1479 - - −416.73 835.45 833.47 0.0989 0.1631

• Poisson-half-logistic by Abdel-Hamid (2016) with F(x) = (eλ{(1−e−αx)/(1+e−αx)} − 1)(eλ − 1)−1.

• Generalized exponential by Mudholkar and Srivastava (1993) with F(x) = (1 − exp(−αx))β.

• The EP by Kuş (2007) with F(x) = (eλe−αx − eλ)(1 − e−λ)−1.

• Poisson-odd exponential uniform by Muhammad (2016b) with F(x) = [1−e−λ(1−e−α(x/(β−x)))]/(1−e−λ).

• Nadarajah and Haghighi (2011) exponential type (NH) with F(x) = 1 − e1−(1+λx)α .

• The half-logistic distribution with cdf as F(x) = (1 − e−αx)(1 + e−αx)−1.

The data set is the remission times (in months) of a random sample of 128 bladder cancer patients
provided by Lee and Wang (2003).

In Figure 4 the TTT (total time on test)-plot show that the data has upside-down bathtub failure
rate function and GHLP distribution has the ability to accommodate upside-down bathtub failure rate
curve.

We estimate the unknown parameters of each model by the method of maximum likelihood. The
numerical values of the log-likelihood (ℓ(θ)), AIC, CAIC, K-S, and its p-value obtained are presented
in Table 3 below. We also used the muhaz package in R software to obtain the empirical hazard
function of the given data set and then fitted with the estimated hazard function of the GHLP obtained
using the MLEs in Table 3.

Table 3 indicates that our proposed model the GHLP distribution has the smallest values of the
AIC, CAIC, and K-S; thus, GHLP provide better fit than the other competing models. Figure 5
provides the plots of the (i) histogram and estimated density (ii) empirical cdf and estimated cdf of the
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Figure 5: Plots of the (i) histogram and estimated density (ii) empirical and estimated cdfs of generalized half-
logistic Poisson (GHLP) distribution for the remission times (in months) of bladder cancer patients. cdf = cumu-

lative distribution function.
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Figure 6: Plots of the (i) empirical hazard and estimated hazard (ii) quantile-quantile function of generalized
half-logistic Poisson (GHLP) distribution for the remission times (in months) of bladder cancer patients.

GHLP distribution. Figure 6 shows (i) empirical and estimated hazard functions (ii) quantile-quantile
of the GHLP distribution for the given data set.

5. Conclusions

We introduced a new three-parameter lifetime distribution with increasing, decreasing and upside-
down bathtub-shaped hazard rate functions. We also provide explicit expressions for the rth ordinary
moment, moment generating function, Shannon and Rényi entropies. The estimation of the model
parameters was conducted by the maximum likelihood method. The practical significance and appli-
cability of the new distribution are demonstrated in an application to real data, which shows that the
GHLP performs better than other existing distributions in terms of fit.

Appendix A:

Proof of Lemma 1: For (2.6), by applying generalized binomial expanding on

(
1 − e−λ

(
1−e−αx
1+e−αx

)) ȷ5
=

∞∑
i=0

(
ȷ5
i

)
(−1)ie−λi

(
1−e−αx
1+e−αx

)
,



Generalized half logistic Poisson distributions 363

then expanding

e−( ȷ6+λi)
(

1−e−αx
1+e−αx

)
=

∞∑
k=0

(−1)k ( ȷ6 + λi)k

k!

(
1 − e−αx

1 + e−αx

)k

we get

J( ȷ1, ȷ2, ȷ3, ȷ4, ȷ5, ȷ6) =
∞∑

i=0

∞∑
k=0

(
ȷ5
i

)
(−1)i+k(λi + ȷ6)k

k!

∫ ∞

0

x ȷ1 e− ȷ2 x (1 − e−αx) ȷ3+k

(1 + e−αx) ȷ4+k dx.

Let u = 1 − e−αx. By the generalized binomial expansion in the denominator we obtain

J( ȷ1, ȷ2, ȷ3, ȷ4, ȷ5, ȷ6) =
∞∑

i=0

∞∑
k,l=0

(
ȷ5
i

) (
−( ȷ4 + k)

l

)
(−1)i+k+ ȷ1 (λi + ȷ6)k

α ȷ1+1k!

×
∫ 1

0
ln ȷ1 (1 − u) (1 − u)

ȷ2
α +l−1 u ȷ3+k du

thus, we have (2.7). �

Appendix B:

Proof of Theorem 2: Let g1(α; β, λ, xi) be the right hand side of (3.2).
For β = 1, let

w1 = −2
n∑

i=1

xie−αxi

1 + e−αxi
− 2λ

n∑
i=1

xie−αxi

(1 + e−αxi )2

then,

lim
α →0

w1 = −
n∑

i=1

xi −
λ

2

n∑
i=1

xi and lim
α →∞

w1 = 0,

g1(α; β, λ, xi) =
n
α
−

n∑
i=1

xi + w1 >
n
α
−

n∑
i=1

xi + lim
α →0

w1

g1(α; β, λ, xi) > 0, if α <
n

(2 + λ
2 )

∑n
i=1 xi

.

On the other side

g1(α; β, λ, xi) =
n
α
−

n∑
i=1

xi + w1 <
n
α
−

n∑
i=1

xi + lim
α →∞

w1

hence,

g1(α; β, λ, xi) < 0, if α >
n∑n

i=1 xi

thus, the root of g1(α; β, λ, xi) = 0 lies in the interval (n/{(2 + λ/2)
∑n

i=1 xi}, n/
∑n

i=1 xi).
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For β , 1, limα →0 g1 = ∞ and limα →∞ g1 = −
∑n

i=1 xi < 0, hence, g1(α; β, λ, xi) is a monotone
decreasing function from positive to negative; thus, g1(α; β, λ, xi) = 0 has at least one root. �

Proof of Theorem 3: Consider that limβ →0 g2 = ∞, then we show that limβ →∞ g2 < 0. But limβ →∞
g2 = −n log(1 − e−λ) +

∑n
i=0 log (1 − e−λ((1−e−αxi )/(1+e−αxi ))); thus, limβ →∞ g2 < 0 only if log(1 − e−λ) >

n−1 ∑n
i=0 log (1 − e−λ((1−e−αxi )/(1+e−αxi ))). To prove the uniqueness we show that g2 is a decreasing func-

tion, that is g
′

2 < 0 and g
′

2 = −n/β2 < 0. �

Proof of Theorem 4: We start with limλ →∞ g3 = −
∑n

i=1 ((1 − e−αxi )/(1 + e−αxi )) < 0; therefore, we
show that limλ →0 g3 > 0. And limλ →0 g3 = nβ−n/2−∑n

i=1 ((1 − e−αxi )/(1 + e−αxi )), thus, limλ →0 g3 >
0 only if β > 1/2 + (1/n)

∑n
i=1 ((1 − e−αxi )/(1 + e−αxi )). �
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