• 제목/요약/키워드: failure of columns

검색결과 577건 처리시간 0.022초

얇은 두께의 웨브를 갖는 세장한 벽체의 변형 능력 평가 (Evaluation of Deformation Capacity of Slender Reinforced Concrete Walls with Thin Web)

  • 엄태성;박홍근;김재요
    • 콘크리트학회논문집
    • /
    • 제22권1호
    • /
    • pp.59-68
    • /
    • 2010
  • 이 연구에서는 얇은 두께의 복부를 갖는 세장한 벽체의 변형능력을 평가하였다. 벽체의 주요한 파괴 모드로서 휨항복 이후 비탄성거동을 보이는 벽체에서 주로 관찰되는 복부압괴와 철근인장파단을 고려하였다. 길이 방향 인장변형은 벽체의 파괴변형에 중요한 영향을 미치므로, 트러스모델을 기반으로 단조하중 및 주기하중을 받는 벽체에 발생되는 길이 방향 인장변형률을 예측하였다. 예측된 길이 방향 인장변형을 고려하여 복부압괴 및 철근인장파단에 의한 벽체의 파괴기준을 정립하였다. 제안된 방법을 사용하여 단면 양단부에 단부요소를 갖는 17개 실험벽체의 변형능력을 평가하고 그 결과를 실험값과 비교하였다. 제안된 방법은 실험벽체의 파괴 모드와 변형능력을 합리적이면서 보수적으로 예측하는 것으로 나타났다.

12m × 3m 스틸 모듈러 시스템의 보-중간기둥 접합부 구조성능 (Structural Performance of Beam-Middle Column Connection of 12m × 3m Steel Modular System)

  • 심성철;이상현;조봉호;우성식;최문식
    • 한국강구조학회 논문집
    • /
    • 제20권6호
    • /
    • pp.793-805
    • /
    • 2008
  • 최근 들어 군막사 및 학교건축물의 증축 등 공사기간의 최소화가 가장 중요시 되는 건설프로젝트에 모듈러 시스템이 적용되고 있다. 기존 모듈러 시스템의 표준모듈은 ${6m\times3m}$로 모듈간 접합부에 기둥이 자주 중복되어 부재수와 벽체두께가 증가한다는 문제점을 가지고 있다. 본 연구에서는 이러한 문제점을 해결하기 위하여 ${12m\times3m}$ 모듈을 제안하였다. 이 모듈을 실현하기 위해 필수적인 다양한 중간기둥-보 접합상세를 제안하였으며, 실험과 해석을 통해 기둥-보 접합부의 최대하중과 파괴모드를 평가하였다. 해석 및 실험결과는 유한요소해석을 통해 비교적 정확히 접합부의 최대하중과 파괴모드를 예측할 수 있음을 보여준다. 제안된 상세 중 일부는 기둥의 설계하중을 상회하는 강도를 보유하고 있어, ${12m\times3m}$모듈의 보-중간기둥 접합상세로 사용할 수 있을 것으로 판단된다.

일반 철근 배근 상세를 갖는 강섬유 보강 콘크리트 연결보의 전단강도 평가 (Shear Strength Evaluation of Steel Fiber Reinforced Concrete Coupling Beams with Conventional Reinforcements Details)

  • 송성휘;손동희;배백일;최창식
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권1호
    • /
    • pp.37-45
    • /
    • 2023
  • 본 연구의 목적은 기존 연결보의 사인장 파괴를 방지하고 연결보의 전단강도를 증가시키며 증가분을 정량적으로 평가하는 것이다. 강섬유는 전단강도를 향상시키고 파괴 메커니즘을 부분적으로 변화시킬 수 있지만 이는 일반적인 RC보와 기둥에 대한 연구결과이며, 강섬유 보강콘크리트에 대한 연결보의 전단강도 증진에 대한 연구는 아직까지 부족한 실정이다. 따라서, 강섬유에 의한 증가된 전단강도와 이에 따른 파괴 메커니즘 변화를 확인하기 위해 강섬유의 혼입률을 변수(0%, 1%, 2%)로 세 개의 실험체를 제작하여 반복가력 실험을 수행하였다. 그 결과, 강섬유를 보강한 실험체(1%, 2%)가 그렇지 않은 실험체(0%) 대비 최대강도 발현 후 콘크리트의 전단저항 기여분이 증가됨에 따라 전단강도가 증진되었다.

Experimental investigation of infilled r/c frames with eccentric openings

  • Kakaletsis, D.;Karayannis, C.
    • Structural Engineering and Mechanics
    • /
    • 제26권3호
    • /
    • pp.231-250
    • /
    • 2007
  • The influence of masonry infills with eccentric openings on the seismic performance of reinforced concrete (r/c) frames that were designed in accordance with current code provisions are investigated. Eight 1/3-scale, single-story, single-bay frame specimens were tested under cyclic horizontal loading up to a drift level of 4%. In all examined cases the shear strength of columns was higher than the cracking shear strength of solid infill. The parameters investigated include the shape and the location of the opening. Assessment of the behavior of the frames is also attempted, based on the observed failure modes, strength, stiffness, ductility, energy dissipation capacity and degradation from cycling loading. Based on these results there can be deduced that masonry infills with eccentrically located openings has been proven to be beneficial to the seismic capacity of the bare r/c frames in terms of strength, stiffness, ductility and energy dissipation. The location of the opening must be as near to the edge of the infill as possible in order to provide an improvement in the performance of the infilled frame.

Structural behaviors of sustainable hybrid columns under compression and flexure

  • Wu, Xiang-Guo;Hu, Qiong;Zou, Ruofei;Zhao, Xinyu;Yu, Qun
    • Structural Engineering and Mechanics
    • /
    • 제52권5호
    • /
    • pp.857-873
    • /
    • 2014
  • Structural behaviors of a sustainable hybrid column with the ultra high performance cementitious composites (UHPCC) permanent form under compression and flexure were studied. Critical state and failure stage characters are analyzed for large and small eccentricity cases. A simplified theoretical model is proposed for engineering designs and unified formulas for loading capacity of the hybrid column under compression and flexure loads are derived, including axial force and moment. Non-linear numerical analysis is carried out to verify the theoretical predictions. The theoretical predictions agree well with the numerical results which are verified by the short hybrid column tests recursively. Compared with the traditional reinforced concrete (RC) column, the loading capacity of the sustainable hybrid column is improved significantly due to UHPCC confinements.

Analysis of RC beams subjected to shock loading using a modified fibre element formulation

  • Valipour, Hamid R.;Huynh, Luan;Foster, Stephen J.
    • Computers and Concrete
    • /
    • 제6권5호
    • /
    • pp.377-390
    • /
    • 2009
  • In this paper an improved one-dimensional frame element for modelling of reinforced concrete beams and columns subjected to impact is presented. The model is developed in the framework of a flexibility fibre element formulation that ignores the shear effect at material level. However, a simple shear cap is introduced at section level to take account of possible shear failure. The effect of strain rate at the fibre level is taken into account by using the dynamic increase factor (DIF) concept for steel and concrete. The capability of the formulation for estimating the element response history is demonstrated by some numerical examples and it is shown that the developed 1D element has the potential to be used for dynamic analysis of large framed structures subjected to impact of air blast and rigid objects.

Parametrical study of the behavior of exterior unreinforced concrete beam-column joints through numerical modeling

  • Silva, Matheus F.A.;Haach, Vladimir G.
    • Computers and Concrete
    • /
    • 제18권2호
    • /
    • pp.215-233
    • /
    • 2016
  • Exterior beam-column joints are structural elements that ensure connection between beams and columns. The joint strength is generally assumed to be governed by the structural element of lowest load capacity (beam or column), however, the joint may be the weakest link. The joint shear behavior is still not well understood due to the influence of several variables, such as geometry of the connection, stress level in the column, concrete strength and longitudinal beam reinforcement. A parametrical study based only on experiments would be impracticable and not necessarily exposes the failure mechanisms. This paper reports on a set of numerical simulations conducted in DIANA$^{(R)}$ software for the investigation of the shear strength of exterior joints. The geometry of the joints and stress level on the column are the variables evaluated. Results have led to empirical expressions that provide the shear strength of unreinforced exterior beam-column joints.

Correlation of damage and analysis of R/C building: Experience from the 1995 Kobe earthquake

  • Matsumori, Taizo;Otani, Shunsuke
    • Structural Engineering and Mechanics
    • /
    • 제6권8호
    • /
    • pp.841-856
    • /
    • 1998
  • During the 1995 Hyogoken-Nanbu Earthquake, a reinforced concrete building, called Jeunesse Rokko, suffered intermediate damage by forming a beam-yielding (weak-beam strong-column) mechanism, which has been regarded as the most desirable earthquake resisting mechanism throughout the world. High cost to repair damage at many beam ends and poor appearance expected after the repair work made the owner decide to tear down the building. Nonlinear earthquake response analyses were conducted to simulate the behavior of the building during the earthquake. The influence of non-structural members was considered in the analysis. The calculated results were compared with the observed damage, especially the location of yield hinges and compression failure of spandrel beams, and the degree of cracking in columns and in column-girder connections.

주철근 겹침이음을 갖는 철근콘크리트 교각의 비탄성 거동 및 연성능력에 관한 해석적 연구 (Analytical Study on Inelastic Behavior and Ductility Capacity of Reinforced Concrete Bridge Columns with Lap Splices)

  • 김태훈;김운학;신현목;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.931-936
    • /
    • 2003
  • Lap splices were located in the plastic hinge region of most bridge piers that were constructed before the adoption of the seismic design provision of Korea Highway Design Specification on 1992. Lap splicing is also permitted if hoops or spiral reinforcement are provided over the lap length in the current seismic design provision. But sudden brittle failure of lap splices may occur under inelastic cyclic loading. The purpose of this study is the analytical prediction of nonlinear hysteretic behavior and ductility capacity of reinforced concrete bridge piers with lap splices under cyclic loading. For this purpose, a nonlinear analysis program, RCAHEST(Reinforced Concrete Analysis in Higher Evaluation System Technology) is used. Lap spliced bar element is developed to predict behaviors of lap spliced bar. Maximum bar stress and slip of lap spliced bar is considered.

  • PDF

Seismic response of substandard RC frame buildings in consideration of staircases

  • Karaaslan, Ayberk;Avsar, Ozgur
    • Earthquakes and Structures
    • /
    • 제17권3호
    • /
    • pp.283-295
    • /
    • 2019
  • During the seismic performance assessment of existing buildings, staircases are generally not taken into account as structural members but as dead load. Staircases, as secondary structural members, not only serve for connecting successive floors but also provide considerable amount of strength and stiffness to the building which can modify its seismic behaviour considerably. In this parametric study, the influence of staircases on the seismic response of substandard RC frame buildings which differ in number of storey and span, presence of staircase and its position has been examined. Modal Analyses and bi-directional Non-Linear Time History Analyses (NLTHA) were conducted to compare several engineering demand parameters (EDPs) such as inter-storey drift ratio (ISDR), floor accelerations, modal properties, member shear forces and plastic hinge distribution. Additionally, short column effect, variation in shear forces of columns that are attached to the staircase slab, failure and deformation in staircase models have also been investigated. As the staircase was considered in the analytical model, a different damage pattern can be developed especially in the structural components close to staircase.