• 제목/요약/키워드: failure of columns

검색결과 582건 처리시간 0.019초

Effect of tube area on the behavior of concrete filled tubular columns

  • Gupta, P.K.;Verma, V.K.;Khaudhair, Ziyad A.;Singh, Heaven
    • Computers and Concrete
    • /
    • 제15권2호
    • /
    • pp.141-166
    • /
    • 2015
  • In the present study, a Finite Element Model has been developed and used to study the effect of diameter to wall thickness ratio (D/t) of steel tube filled with concrete under axial loading on its behavior and load carrying capacity. The model is verified by comparing its findings with available experimental results. Influence of thickness and area of steel tube on strength, ductility, confinement and failure mode shapes has been studied. Strength enhancement factors, load factor, confinement contribution, percentage of steel and ductility index are defined and introduced for the assessment. A parametric study by varying length and thickness of tube has been carried out. Diameter of tube kept constant and equals to 140 mm while thickness has been varied between 1 mm and 6 mm. Equations were developed to find out the ultimate load and confined concrete strength of concrete. Variation of lateral confining pressure along the length of concrete cylinder was obtained and found that it varies along the length. The increase in length of tubes has a minimal effect on strength of tube but it affects the failure mode shapes. The findings indicate that optimum use of materials can be achieved by deciding the thickness of steel tube. A better ductility index can be obtained with the use of higher thickness of tube.

Research on anti-seismic property of new end plate bolt connections - Wave web girder-column joint

  • Jiang, Haotian;Li, Qingning;Yan, Lei;Han, Chun;Lu, Wei;Jiang, Weishan
    • Steel and Composite Structures
    • /
    • 제22권1호
    • /
    • pp.45-61
    • /
    • 2016
  • The domestic and foreign scholars conducted many studies on mechanical properties of wave web steel beam and high-strength spiral stirrups confined concrete columns. Based on the previous research work, studies were conducted on the anti-seismic property of the end plate bolt connected wave web steel beam and high-strength spiral stirrups confined concrete column nodes applied with pre-tightening force. Four full-size node test models in two groups were designed for low-cycle repeated loading quasi-static test. Through observation of the stress, distortion, failure process and failure mode of node models, analysis was made on its load-carrying capacity, deformation performance and energy dissipation capacity, and the reliability of the new node was verified. The results showed that: under action of the beam-end stiffener, the plastic hinges on the end of wave web steel beam are displaced outward and played its role of energy dissipation capacity. The study results provided reliable theoretical basis for the engineering application of the new types of nodes.

A case study of reinforced concrete short column under earthquake using experimental and theoretical investigations

  • Chen, Chen-Yuan;Liu, Kuo-Chiang;Liu, Yuh-Wehn;Huang, Wehn-Jiunn
    • Structural Engineering and Mechanics
    • /
    • 제36권2호
    • /
    • pp.197-206
    • /
    • 2010
  • The purpose of this paper is to carry out both experimental and theoretical investigations of R.C. short column subjected to horizontal forces under constant compressive loading. Eight specimens with section of 40 cm ${\times}$ 40 cm, height 40 cm and 50 cm and different type hoop were used of the steel cage to detect the seismic behavior of reinforced concrete short columns. Hoop spacing of column, strength of concrete, and the axial load of experiments were the three main parameters in this test. A series of equations were derived to reveal the theory could be used on analysis short column, too. Through test failure model of R.C short column being established, the type of hoop affects the behavior R.C short column in ductility rather than in strength. And the effect of analysis by Truss Model is evident and reliable in shear failure model of short column.

Failure characteristics of columns intersected by slabs with different compressive strengths

  • Choi, Seung-Ho;Hwang, Jin-Ha;Han, Sun-Jin;Kang, Hyun;Lee, Jae-Yeon;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • 제74권3호
    • /
    • pp.435-443
    • /
    • 2020
  • The objective of this study was to determine the effective compressive strength of a column-slab connection with different compressive strengths between the column and slab concrete. A total of eight column specimens were fabricated, among which four specimens were restrained by slabs while the others did not have any slab, and the test results were compared with current design codes. According to ACI 318, the compressive strength of a column can be used as the effective compressive strength of the column-slab connection in design when the strength ratio of column concrete to slab concrete is less than 1.4. Even in this case, however, this study showed that the effective compressive strength decreased. The specimen with its slab-column connection zone reinforced by steel fibers showed an increased effective compressive strength compared to that of the specimen without the reinforcement, and the interior column specimens restrained with slabs reached the compressive strength of the column.

Experimental and numerical assessment of beam-column connection in steel moment-resisting frames with built-up double-I column

  • Dehghan, Seyed Mehdi;Najafgholipour, Mohammad Amir;Ziarati, Seyed Mohsen;Mehrpour, Mohammad Reza
    • Steel and Composite Structures
    • /
    • 제26권3호
    • /
    • pp.315-328
    • /
    • 2018
  • Built-up Double-I (BD-I) columns consist of two hot rolled IPE sections and two cover plates which are welded by fillet welds. In Iran, this type of column is commonly used in braced frames with simple connections and sometimes in low-rise Moment Resisting Frames (MRF) with Welded Flange Plate (WFP) beam-column detailing. To evaluate the seismic performance of WFP connection of I-beam to BD-I column, traditional and modified exterior MRF connections were tested subjected to cyclic prescribed loading of AISC. Test results indicate that the traditional connection does not achieve the intended behavior while the modified connection can moderately meet the requirements of MRF connection. The numerical models of the connections were developed in ABAQUS finite element software and validated with the test results. For this purpose, moment-rotation curves and failure modes of the tested connections were compared with the simulation results. Moreover to avoid improper failure modes, some improvements of the connections were evaluated through a numerical study.

Flexural bearing capacity of diaphragm-through joints of concrete-filled square steel tubular columns

  • Rong, Bin;Liu, Rui;Zhang, Ruoyu;Chen, Zhihua;Apostolos, Fafitis
    • Steel and Composite Structures
    • /
    • 제20권3호
    • /
    • pp.487-500
    • /
    • 2016
  • In order to investigate the flexural bearing capacity of panel zone of diaphragm-through joint between concrete filled square steel tubular column and steel beam, four specimens were tested under static tension loads to study the mechanical properties and bearing capacity of diaphragm-through joints with a failure mode of panel zone. Finite element models of these specimens were developed to simulate the test and compare the predicted failure modes, load-displacement curves and bearing capacities with the experimentally observed. It was found that the tensile load from the steel beam flange is mainly shared by the square steel tube and the diaphragm. The diaphragm plastic zone appears along the cross-section lines enclosed by the square steel tube and the influence of steel beam web on the plastic zone of the steel tube is significant and cannot be neglected. Computational models of yield lines on square steel tube and diaphragm are established based on the distribution pattern of the plastic zone, and an analytical method for the evaluation of the bearing capacity of the joint is proposed. The theoretical results and the experimental data are compared and found in good agreement.

Hysteretic performance of a novel composite wall panel consisted of a light-steel frame and aerated concrete blocks

  • Wang, Xiaoping;Li, Fan;Wan, Liangdong;Li, Tao
    • Steel and Composite Structures
    • /
    • 제41권6호
    • /
    • pp.861-871
    • /
    • 2021
  • This study aims at investigating the hysteretic performance of a novel composite wall panel fabricated by infilling aerated concrete blocks into a novel light-steel frame used for low-rise residential buildings. The novel light-steel frame is consisted of two thin-wall rectangular hollow section columns and a truss-beam assembled using patented U-shape connectors. Two bare light-steel frames and two composite wall panels have been tested to failure under horizontal cyclic loading. Hysteretic curves, lateral resistance and stiffness of four specimens have been investigated and analyzed. Based on the testing results, it is found that the masonry infill can significantly increase the lateral resistance and stiffness of the novel light-steel frame, about 2.3~3 and 21.2~31.5 times, respectively. Failure mode of the light-steel frame is local yielding of the column. For the composite wall panel, firstly, masonry infill is crushed, subsequently, local yielding may occur at the column if loading continues. Hysteretic curve of the composite wall panel obtained is not plump, implying a poor energy dissipation capacity. However, the light-steel frame of the composite wall panel can dissipate more energy after the masonry infill is crushed. Therefore, the composite wall panel has a much higher energy dissipation capacity compared to the bare light-steel frame.

Numerical investigation of the hysteretic response analysis and damage assessment of RC column

  • Abdelmounaim Mechaala;Benazouz Chikh;Hakim Bechtoula;Mohand Ould Ouali;Aghiles Nekmouche
    • Advances in Computational Design
    • /
    • 제8권2호
    • /
    • pp.97-112
    • /
    • 2023
  • The Finite Element (FE) modeling of Reinforced Concrete (RC) under seismic loading has a sensitive impact in terms of getting good contribution compared to experimental results. Several idealized model types for simulating the nonlinear response have been developed based on the plasticity distribution alone the model. The Continuum Models are the most used category of modeling, to understand the seismic behavior of structural elements in terms of their components, cracking patterns, hysteretic response, and failure mechanisms. However, the material modeling, contact and nonlinear analysis strategy are highly complex due to the joint operation of concrete and steel. This paper presents a numerical simulation of a chosen RC column under monotonic and cyclic loading using the FE Abaqus, to assessthe hysteretic response and failure mechanisms in the RC columns, where the perfect bonding option is used for the contact between concrete and steel. While results of the numerical study under cyclic loading compared to experimental tests might be unsuccessful due to the lack of bond-slip modeling. The monotonic loading shows a good estimation of the envelope response and deformation components. In addition, this work further demonstrates the advantage and efficiency of the damage distributions since the obtained damage distributions fit the expected results.

적층성을 띤 CFS로 보강된 원형 콘크리트 기둥의 보강효과 해석 (Strengthening Effect Analysis of Circular Concrete Column Strengthened with Laminated CFS)

  • 이상호;허원석
    • 콘크리트학회논문집
    • /
    • 제11권3호
    • /
    • pp.89-100
    • /
    • 1999
  • The purpose of this study is to develop an analytic model of the concrete column strengthened with laminated CFS, and to provide a basic guideline for the strengthening design by CFS considering orthotropic properties of laminate. In this study, an analytical stress-strain model of laminated CFS is presented based on Tsai-Hill failure criterion. This model has been implemented in an algorithm which can evaluate the confinement effect of CFS. Through this algorithm, the stress-strain relationship of confined concrete is obtained and compared with experimental results of other studies. Using the constitutive relationships, section analyses of concrete column strengthened with CFS are done, and load-moment and load-curvature interaction curves are obtained. In addition, the strengthening effects of CFS according to various laminated angles are analyzed. Analytical results show that the strengthening effects of the strengthened concrete columns are significantly different in compression, flexure, and ductility according to the laminated ways. In compressive direction of principal stress shows the superiority, where an in flexural strengthening effects, [0/90]s does. In the aspect of ductility, [90]s shows the best effect.

Quadrilateral RAC filled FRP tubes: Compressive behavior, design and finite element models

  • Ming-Xiang Xiong;Xuchi Chen;Fengming Ren
    • Steel and Composite Structures
    • /
    • 제48권5호
    • /
    • pp.485-498
    • /
    • 2023
  • The need for carbon neutrality in the world strives the construction industry to reduce the use of construction materials. Aiming to this, recycled aggregate concrete (RAC) could be used as it reduces the carbon dioxide emissions. Currently, RAC is mainly used in non-structural members of civil constructions, seldom used in structural members. To broaden its structural use, a new type of composite column, i.e., the square and rectangular RAC filled FRP tubes (CFFTs), has been concerned in this study. The investigation on their axial compressive behavior through physical test and numerical analysis demonstrated that the load-carrying capacity of such column is reduced with the increase of replacement ratio of recycled aggregate and aspect ratio of section but can be improved by the increase of FRP confining stiffness and corner radius, said capacity can be equivalent to their steel reinforced concrete counterparts. At failure, the hoop strain at corner of tube is unexpectedly smaller than that at flat side of the tube although the FRP tube ruptured at its corner first, revealing a premature failure. Besides, a design-oriented stress-strain model of concrete and an analysis-oriented finite element model are proposed to predict the load-strain response of square and rectangular CFFT columns, which facilitates the engineering use of RAC in load-carrying structural members.