• Title/Summary/Keyword: failure detection equipment

Search Result 81, Processing Time 0.022 seconds

A Study on the Implementation and Development of Image Processing Algorithms for Vibes Detection Equipment (정맥 검출 장비 구현 및 영상처리 알고리즘 개발에 대한 연구)

  • Jin-Hyoung, Jeong;Jae-Hyun, Jo;Jee-Hun, Jang;Sang-Sik, Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.6
    • /
    • pp.463-470
    • /
    • 2022
  • Intravenous injection is widely used for patient treatment, including injection drugs, fluids, parenteral nutrition, and blood products, and is the most frequently performed invasive treatment for inpatients, including blood collection, peripheral catheter insertion, and other IV therapy, and more than 1 billion cases per year. Intravenous injection is one of the difficult procedures performed only by experienced nurses who have been trained in intravenous injection, and failure can lead to thrombosis and hematoma or nerve damage to the vein. Nurses who frequently perform intravenous injections may also make mistakes because it is not easy to detect veins due to factors such as obesity, skin color, and age. Accordingly, studies on auxiliary equipment capable of visualizing the venous structure of the back of the hand or arm have been published to reduce mistakes during intravenous injection. This paper is about the development of venous detection equipment that visualizes venous structure during intravenous injection, and the optimal combination was selected by comparing the brightness of acquired images according to the combination of near-infrared (NIR) LED and Filter with different wavelength bands. In addition, an image processing algorithm was derived to threshehold and making blood vessel part to green through grayscale conversion, histogram equilzation, and sharpening filters for clarity of vein images obtained through the implemented venous detection experimental module.

Unstructured Data Analysis using Equipment Check Ledger: A Case Study in Telecom Domain (장비점검 일지의 비정형 데이터분석을 통한 고장 대응 효율화 사례 연구)

  • Ju, Yeonjin;Kim, Yoosin;Jeong, Seung Ryul
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.127-135
    • /
    • 2020
  • As the importance of the use and analysis of big data is emerging, there is a growing interest in natural language processing techniques for unstructured data such as news articles and comments. Particularly, as the collection of big data becomes possible, data mining techniques capable of pre-processing and analyzing data are emerging. In this case study with a telecom company, we propose a methodology how to formalize unstructured data using text mining. The domain is determined as equipment failure and the data is about 2.2 million equipment check ledger data. Data on equipment failures by 800,000 per year is accumulated in the equipment check ledger. The equipment check ledger coexist with both formal and unstructured data. Although formal data can be easily used for analysis, unstructured data is difficult to be used immediately for analysis. However, in unstructured data, there is a high possibility that important information. Because it can be contained that is not written in a formal. Therefore, in this study, we study to develop digital transformation method for unstructured data in equipment check ledger.

Designing a system to defend against RDDoS attacks based on traffic measurement criteria after sending warning alerts to administrators (관리자에게 경고 알림을 보낸 후 트래픽 측정을 기준으로 RDDoS 공격을 방어하는 시스템 설계)

  • Cha Yeansoo;Kim Wantae
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.20 no.1
    • /
    • pp.109-118
    • /
    • 2024
  • Recently, a social issue has arisen involving RDDoS attacks following the sending of threatening emails to security administrators of companies and institutions. According to a report published by the Korea Internet & Security Agency and the Ministry of Science and ICT, survey results indicate that DDoS attacks are increasing. However, the top response in the survey highlighted the difficulty in countering DDoS attacks due to issues related to security personnel and costs. In responding to DDoS attacks, administrators typically detect anomalies through traffic monitoring, utilizing security equipment and programs to identify and block attacks. They also respond by employing DDoS mitigation solutions offered by external security firms. However, a challenge arises from the initial failure in early response to DDoS attacks, leading to frequent use of detection and mitigation measures. This issue, compounded by increased costs, poses a problem in effectively countering DDoS attacks. In this paper, we propose a system that creates detection rules, periodically collects traffic using mail detection and IDS, notifies administrators when rules match, and Based on predefined threshold, we use IPS to block traffic or DDoS mitigation. In the absence of DDoS mitigation, the system sends urgent notifications to administrators and suggests that you apply for and use of a cyber shelter or DDoS mitigation. Based on this, the implementation showed that network traffic was reduced from 400 Mbps to 100 Mbps, enabling DDoS response. Additionally, due to the time and expense involved in modifying detection and blocking rules, it is anticipated that future research could address cost-saving through reduced usage of DDoS mitigation by utilizing artificial intelligence for rule creation and modification, or by generating rules in new ways.

Development of a complex failure prediction system using Hierarchical Attention Network (Hierarchical Attention Network를 이용한 복합 장애 발생 예측 시스템 개발)

  • Park, Youngchan;An, Sangjun;Kim, Mintae;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.127-148
    • /
    • 2020
  • The data center is a physical environment facility for accommodating computer systems and related components, and is an essential foundation technology for next-generation core industries such as big data, smart factories, wearables, and smart homes. In particular, with the growth of cloud computing, the proportional expansion of the data center infrastructure is inevitable. Monitoring the health of these data center facilities is a way to maintain and manage the system and prevent failure. If a failure occurs in some elements of the facility, it may affect not only the relevant equipment but also other connected equipment, and may cause enormous damage. In particular, IT facilities are irregular due to interdependence and it is difficult to know the cause. In the previous study predicting failure in data center, failure was predicted by looking at a single server as a single state without assuming that the devices were mixed. Therefore, in this study, data center failures were classified into failures occurring inside the server (Outage A) and failures occurring outside the server (Outage B), and focused on analyzing complex failures occurring within the server. Server external failures include power, cooling, user errors, etc. Since such failures can be prevented in the early stages of data center facility construction, various solutions are being developed. On the other hand, the cause of the failure occurring in the server is difficult to determine, and adequate prevention has not yet been achieved. In particular, this is the reason why server failures do not occur singularly, cause other server failures, or receive something that causes failures from other servers. In other words, while the existing studies assumed that it was a single server that did not affect the servers and analyzed the failure, in this study, the failure occurred on the assumption that it had an effect between servers. In order to define the complex failure situation in the data center, failure history data for each equipment existing in the data center was used. There are four major failures considered in this study: Network Node Down, Server Down, Windows Activation Services Down, and Database Management System Service Down. The failures that occur for each device are sorted in chronological order, and when a failure occurs in a specific equipment, if a failure occurs in a specific equipment within 5 minutes from the time of occurrence, it is defined that the failure occurs simultaneously. After configuring the sequence for the devices that have failed at the same time, 5 devices that frequently occur simultaneously within the configured sequence were selected, and the case where the selected devices failed at the same time was confirmed through visualization. Since the server resource information collected for failure analysis is in units of time series and has flow, we used Long Short-term Memory (LSTM), a deep learning algorithm that can predict the next state through the previous state. In addition, unlike a single server, the Hierarchical Attention Network deep learning model structure was used in consideration of the fact that the level of multiple failures for each server is different. This algorithm is a method of increasing the prediction accuracy by giving weight to the server as the impact on the failure increases. The study began with defining the type of failure and selecting the analysis target. In the first experiment, the same collected data was assumed as a single server state and a multiple server state, and compared and analyzed. The second experiment improved the prediction accuracy in the case of a complex server by optimizing each server threshold. In the first experiment, which assumed each of a single server and multiple servers, in the case of a single server, it was predicted that three of the five servers did not have a failure even though the actual failure occurred. However, assuming multiple servers, all five servers were predicted to have failed. As a result of the experiment, the hypothesis that there is an effect between servers is proven. As a result of this study, it was confirmed that the prediction performance was superior when the multiple servers were assumed than when the single server was assumed. In particular, applying the Hierarchical Attention Network algorithm, assuming that the effects of each server will be different, played a role in improving the analysis effect. In addition, by applying a different threshold for each server, the prediction accuracy could be improved. This study showed that failures that are difficult to determine the cause can be predicted through historical data, and a model that can predict failures occurring in servers in data centers is presented. It is expected that the occurrence of disability can be prevented in advance using the results of this study.

The Basic Study on the Method of Acoustic Emission Signal Processing for the Failure Detection in the NPP Structures (원전 구조물 결함 탐지를 위한 음향방출 신호 처리 방안에 대한 기초 연구)

  • Kim, Jong-Hyun;Korea Aerospace University, Jae-Seong;Lee, Jung;Kwag, No-Gwon;Lee, Bo-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.485-492
    • /
    • 2009
  • The thermal fatigue crack(TFC) is one of the life-limiting mechanisms at the nuclear power plant operating conditions. In order to evaluate the structural integrity, various non-destructive test methods such as radiographic test, ultrasonic test and eddy current are used in the industrial field. However, these methods have restrictions that defect detection is possible after the crack growth. For this reason, acoustic emission testing(AET) is becoming one of powerful inspection methods, because AET has an advantage that possible to monitor the structure continuously. Generally, every mechanism that affects the integrity of the structure or equipment is a source of acoustic emission signal. Therefore the noise filtering is one of the major works to the almost AET researchers. In this study, acoustic emission signal was collected from the pipes which were in the successive thermal fatigue cycles. The data were filtered based on the results from previous experiments. Through the data analysis, the signal characteristics to distinguish the effective signal from the noises for the TFC were proven as the waveform difference. The experiment results provide preliminary information for the acoustic emission technique to the continuous monitoring of the structure failure detection.

Analysis on the Lighting Characteristics using KLDNet in Korea (낙뢰감지 네트워크를 이용한 한반도 낙뢰특성 분석)

  • Woo, Jung-Wook;Kwak, Joo-Sik;Koo, Kyo-Sun;Kim, Kyung-Tak;Kweon, Dong-Jin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.9
    • /
    • pp.117-123
    • /
    • 2009
  • Recently, the failures of electrical equipment have been reduced due to the improvement of its quality and the advance of operation techniques but the failure rates caused by natural disasters such as wind and lightning have been increased. To reduce the failures due to lightning, it is necessary for insulation design of transmission lines to be done, effectively. Also the analysis on the lightning characteristics is essential to the effective insulation design. In this paper, we describe lightning distribution, multiplicity, IKL(Iso-Keraunic Level) and amplitude distribution of lightning current base on the lightning data by KLDNet.

Establishment of Diagnostic Criteria in the Preventive Diagnostic System for the Power Transformer (전력용 변압기 예방진단새스템의 진단기준치 실정)

  • Kweon Dong-Jin;Koo Kyo-Sun;Kwak Joo-Sik;Woo Jung-Wook;Kang Yeon-Wook
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.9
    • /
    • pp.449-456
    • /
    • 2005
  • The preventive diagnostic technique prevents transformers from power failure through giving alarm and observing transformers in service. And it helps to establish the plan for optimum maintenance of the transformer as well as to find location or cause of fault using accumulated data. Data detection and experience of the preventive diagnostic system need to establish the preventive diagnostic algorithm regarding interrelationship between detected data and deterioration of equipment. Therefore in-depth analysis about the preventive diagnosis system is required. KEPCO has adopted the preventive diagnostic system at nine 345kV substations since 1997. Techniques for component sensors of the preventive diagnosis system were settled but diagnosis algorithm, diagnostic criteria and practical use of accumulated data are not yet established. This paper, to build up the base of preventive diagnostic algorithm for the Power transformer. investigated the preventive diagnostic criteria for the power transformer.

The Study on tree growth in XLPE using PD patterns (부분방전 패턴을 이용한 가교폴리에틸렌에서의 트리성장에 관한 연구)

  • Kang, Dae-Yong;Wu, Guangning;Shin, Chang-Myon;Park, Myoung-Seop;Cho, Kyu-Bock;HwangBo, Seung;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.941-943
    • /
    • 1998
  • Exploitation of equipment with cross linked polyethylene (XLPE) insulation requires its condition monitoring and diagnostic. Traditionally diagnostics of insulation is carried out by means of partial discharge detection. Many researchers have developed a lot of methods to identify the defect by the PD form. However, such identification of a defect, for example, void, inclusion or treeing, does not say about its danger from a point of view of full insulation gap breakdown and insulation construction failure. The information about the form and size of formed upon high voltage treeing is necessary for prediction of the remained resource of XLPE insulation. For this purpose we carry out experimental research for determination of the dependencies between PD characteristics in XLPE upon time and three dimension PD patterns of corresponding treeing. The investigations were carried out by means of electrical measurement of PD current and simultaneous optical recording of treeing image. Test results show that the PD patterns can be applied for detecting tree growth well.

  • PDF

A Study on the Forming Failure Inspection of Small and Multi Pipes (소형 다품종 파이프의 실시간 성형불량 검사 시스템에 관한 연구)

  • 김형석;이회명;이병룡;양순용;안경관
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.61-68
    • /
    • 2004
  • Recently, there has been an increasing demand for computer-vision based inspection and/or measurement system as a part of factory automation equipment. Existing manual inspection method can inspect only specific samples and has low measuring accuracy as well as it increases working time. Thus, in order to improve the objectivity and reproducibility, computer-aided analysis method is needed. In this paper, front and side profile inspection and/or data transfer system are developed using computer-vision during the inspection process on three kinds of pipes coming from a forming line. Straight line and circle are extracted from profiles obtained from vision using Laplace operator. To reduce inspection time, Hough Transform is used with clustering method for straight line detection and the center points and diameters of inner and outer circle are found to determine eccentricity and whether good or bad. Also, an inspection system has been built that each pipe's data and images of good/bad test are stored as files and transferred to the server so that the center can manage them.

Condition Monitoring and Diagnosis of a Hot Strip Roughing Mill Using an Autoencoder (오토인코더를 이용한 열간 조압연설비 상태모니터링과 진단)

  • Seo, Myung Kyo;Yun, Won Young
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.1
    • /
    • pp.75-86
    • /
    • 2019
  • Purpose: It is essential for the steel industry to produce steel products without unexpected downtime to reduce costs and produce high quality products. A hot strip rolling mill consists of many mechanical and electrical units. In condition monitoring and diagnosis, various units could fail for unknown reasons. Methods: In this study, we propose an effective method to detect units with abnormal status early to minimize system downtime. The early warning problem with various units was first defined. An autoencoder was modeled to detect abnormal states. An application of the proposed method was also implemented in a simulated field-data analysis. Results: We can compare images of original data and reconstructed images, as well as visually identify differences between original and reconstruction images. We confirmed that normal and abnormal states can be distinguished by reconstruction error of autoencoder. Experimental results show the possibility of prediction due to the increase of reconstruction error from just before equipment failure. Conclusion: In this paper, hot strip roughing mill monitoring method using autoencoder is proposed and experiments are performed to study the benefit of the autoencoder.