• Title/Summary/Keyword: facing discharge

Search Result 38, Processing Time 0.032 seconds

A study on the Discharge Characteristics of Facing Targets Sputtering Systems and Fabrications of $Al_{N}$ Thin Films (대향전극 스파트링 시스템의 방전특성과 $Al_{N}$ 박막형성에 관한 연구)

  • 이종호;이규철;남용수;김경석
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.05a
    • /
    • pp.71-73
    • /
    • 1994
  • In this paper we have investigated discharge conditions(parameters of this experiment) in facing targets sputtering system and fabricated $Al_{N}$ thin films. The parameters of this study are diameter of wing(d) and distance(L) between two facing targets. Varing discharge conditions, the discharge characteristics are wide different. The optimal conditions in this experiments are d = 6.5 [cm], L = 6.5[cm]

  • PDF

Characteristic of Facing Discharge Front plate Address Electrode Structure in AC PDP

  • Cho, Hyun-Min;Kim, Dong-Hwan;Song, In-Cheol;Kim, Yun-Gi;Ok, Jung-Woo;Kim, Dong-Hyun;Lee, Hae-June;Lee, Ho-Jun;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.104-107
    • /
    • 2009
  • In order to improve discharge characteristics in AC PDP, we suggest FDFA (Facing Discharge Front plate Address Electrode) structure. By adopting both long facing discharge electrodes and address electrodes in front plate, the FDFA structure make it possible to gain a high luminance, low power consumption, and a high luminous efficiency.

  • PDF

Recent Improvement of Luminous Efficacy for AC-PDP with Tilted Facing Electrode

  • Ok, Jung-Woo;Kim, Deok-Won;Lim, Jeong-Hwan;Kim, Dong-Hyun;Lee, Ho-Jun;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.65-68
    • /
    • 2008
  • In this study, in order to improve luminous efficacy of AC-PDP, the new facing discharge structure has been suggested. The suggested structure has tilted facing electrode. It shows lower discharge current, higher luminance and luminous efficacy compared with those of reference structure with coplanar electrode structure.

  • PDF

A Study on the Discharge Characteristics of Facing Target Sputtering System and Fabrication of TiN Thin Films (대향전극(對向電極) 스파트링 시스템의 방전특성(放電特性)과 TiN 박모형성(薄膜形成)에 관(關)한 연구(硏究))

  • Lee, Jong-Ho;Lee, Kyu-Chul;Lee, Tea-Sik;Nam, Yong-Su
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.272-274
    • /
    • 1993
  • In this paper, We were studied the discharge occurrence voltage characteristics. discharge current-discharge voltage characteristics, electron temperature and electron density characteristics on the Facing Tarcket Sputtering System(FTSS) and fabrication of TiN thin films. The discharge occurrence voltage characteristics and discharge current are significantly affected by magnetic flux density. The minimum value of discharge occurrence voltage are obtained about 100[Gauss]. The electron temperature are about 4-8 [eV], and electron density are about $10^{10}cm^{-3}$.

  • PDF

A Study on the Glow Discharge Characteristics of Facing Target Plasma Process (대향 음극형 플라즈마 프로세스의 글로우 방전특성에 관한 연구)

  • Park, Chung-Hoo;Cho, Jung-Soo;Kim, Kwang-Hwa;Sung, Youl-Mool
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.478-484
    • /
    • 1994
  • Facing target dc sputtering system developed by Hoshi et al. has simple configuration and high deposition rate under moderate substrate temperature in the range of pressure 5x10S0-4T - 1x10S0-2T torr. In this system, magnetic field should be applied perpendicular to the target surface in order to confine high energy secondary electrons between two targets. Because of this magnetic field, the glow discharge characteristics are very different from dc planar diode system showing some unstable discharge region. In this paper, the glow discharge characteristics of this system have been studied under the condition of Ti targets with Ar-NS12T(10%) as working gas. It is found that this system has stable discharge region under the discharge current density of 15-30(mA/cmS02T). The plasma density and electron temperature are in the range of 10S010Y - 10S011T(CMS0-3T) and 2.5-5(eV), respectively.

Discharge Characteristics of Facing Targets Sputtering Apparatus with Targets Species (타켓 종류에 따른 대향타겟 스퍼터링 장치의 방전 특성)

  • Keum, Min-Jong;Son, In-Hwan;Shin, Sung-Kwan;Ga, Ch-Hyun;Park, Yong-Seo;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.620-623
    • /
    • 2004
  • In this study, the discharge characteristic of FTS (Facing Targets Sputtering) apparatus was investigated using metal target paramagnetic and ceramic targets such as Zn, Al, $ZnO:Al(Al_2O_3)$, ITO. Threshold voltage and stable stage of discharge show different with target species. Compare with commercial sputtering apparatus, the FTS apparatus is a high-speed sputter method that promotes ionization of sputter gas by screw and reciprocate moving high-speed ${\gamma}$electrons which arrays two targets facing each other, inserts plasma arresting magnetic field to the parallel direction of the center axis of both targets, discharged from targets and accelerated at the cathode falling area. Especially, we notice that the FTS method using ceramic target has stable discharge characteristic even by DC power source.

  • PDF

A Study on the Discharge Characteristics of Facing Taget Sputtering System (대향전극 스퍼트 시스템의 방전특성에 관한 연구)

  • 이종호;이규철;남용수;이태식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1993.11a
    • /
    • pp.128-130
    • /
    • 1993
  • This paper presents the discharge characteristics of FTS system under verious discharge condition. E1ectron temperature and electron density are studied by double probe method. The Characteristics of discharge occurrence vol-tage and discharge current are significantly affected by magnetic flux density. And the best TiN thin film is obtained at 700[Vl, 400[gauss] and 1.0[mtorr].

  • PDF

A Study on the Characteristics of Discharge and AIN Thin Film for Variation of Wings Diameter in FTS System (FTS 시스템에서 윙의 변화에 따른 방전 및 AIN 박막특성에 관한 연구)

  • 이종호;황영한;남용수;김경석;임준형;엄무수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.109-112
    • /
    • 1994
  • In this Paper, we had investigated the optimal discharge condition (parameters of this experiment) in Facing Targets Sputtering System and AIN thin film. The parameters of this study are diameter of wing and electrode distance between two facing targets. If the parameters are varied, the discharge characteristics will be varied. So, we proved the optimal parameters of this experiment. Under this optimal parameter, thin film formed, and then growth rate investigated.

A Study on the Characteristics of Sputter ion Plating by ion Energy Analysis (이온 에너지 분석에 의한 Sputter Ion Plating의 동작 특성 연구)

  • Sung, Y.M.;Lee, C.Y.;Cho, J.S.;Park, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.228-230
    • /
    • 1994
  • A Spotter ion Plating(SIP) system with a r. f. coil electrode and the Facing Target Sputter(FTS) source was designed for high-quality thin film formation. The rf discharge was combined with DC facing target sputtering in order to enhance ionization degree of a sputtered atoms. The discharge voltage-discharge characteristics curves of a FTS source could be characterized by the fern of $I{\propto}V^n$ with n in the range of $8{\sim}12$. The energy of ions incident on the substrate depended on the sheath potential of DC biased substrate. The mean impact ion energy increased with negative bias voltage and rf power. The adhesive force of the TiN film formed was in the range of $30{\sim}50N$, and markedly influenced by substrate bias voltage.

  • PDF

Plasma Characterization of Facing Target Sputter System for Carbon Nitride Film Deposition

  • Lee, Ji-Gong;Lee, Sung-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.3
    • /
    • pp.98-103
    • /
    • 2004
  • The plasma properties in the facing target sputtering system during carbon nitride film deposition have been investigated. The ionized nitrogen species of the deposited films increased with increasing discharge current and were independent of the nitrogen pressure. The nitrogen content in the films did not vary significantly with the variation of nitrogen gas. The electron temperature was high close to that in the inter-cathode region, reduced as the electrons moved away from the most intense region of magnetic confinement and increased again outside this region. Calculations based on the film composition showed that the ion to carbon atom ratio at the substrate was about 50 and that the ratio between the ionized and neutral nitrogen molecules was about 0.25.