• Title/Summary/Keyword: facility monitoring

Search Result 578, Processing Time 0.026 seconds

Remote Vital Signal Monitoring System Based on Wireless Sensor Network Using Ad-Hoc Routing

  • Walia Gaurav;Lee Young-Dong;Chung Wan-Young
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.2
    • /
    • pp.67-70
    • /
    • 2006
  • A distributed healthcare monitoring system prototype for clinical and trauma patients was developed, using wireless sensor network node. The proposed system aimed to measure various vital physiological health parameters like ECG and body temperature of patients and elderly persons, and transfer his/her health status wirelessly in Ad-hoc network to remote base station which was connected to doctor's PDA/PC or to a hospital's main Server using wireless sensor node. The system also aims to save the cost of healthcare facility for patients and the operating power of the system because sensor network is deployed widely and the distance from sensor to base station was shorter than in general centralized system. The wireless data communication will follow IEEE 802.15.4 frequency communication with ad-hoc routing thus enabling every motes attached to patients, to form a wireless data network to send data to base-station, providing mobility and convenience to the users in home environment.

Development of Signal Monitoring and Analyzing System for Down Coiler in Rolling Process (열연 Down Coiler 센서 및 제어신호 시분석 시스템 개발)

  • 손붕호;임은섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.132-132
    • /
    • 2000
  • The reliability of EIC systems in hot rolling mill is indispensable and very important in order to maintain stable production. Signals obtained from sensors and control system should be analyzed to monitor the condition of down coiler in hot rolling mill. We develope a monitoring system of down coiler which is composed of three parts (1) data acquisition and MMI (2) signal processing and analyzing, and (3) automatic data saving. Also it is designed to enable to inform users the abnormal conditions of down coiler. This developed system is expected to make it possible to reduce long downtime, secure high facility precision, and maintain high control levels.

  • PDF

Development of a Process Monitoring System for Real-Time Process Control (실시간 공정관리를 위한 공정모니터링 시스템 개발)

  • Lee, Jung-Hwan;Lee, Seung-Hoon;Oh, Hyun-Ok
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.1
    • /
    • pp.92-100
    • /
    • 2008
  • This paper develops a process monitoring system for real-time process control. The practical case is studied on a small and medium marine equipment company. For business process reengineering of the company, we adopt an approach based on information engineering methodology, which consists of four stages : planning, analysis, design, and implementation. The system is developed for Client/Server environment. We discuss the constructing of hardware system for real-time process control at low cost. The developed system is composed of interrelated modules for item master and BOM management, process control, facility management, SQC and work report.

Research of Real-Time Remote Operation for Quality Improvement of the Air-compressor : Case Study of Reciprocating Air-compressor (공기압축기의 품질향상을 위한 실시간 원격 운영시스템 연구 : 왕복동형 공기압축기 대상으로)

  • Im, Sang-Don;Kim, Jong-Rae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.33-40
    • /
    • 2014
  • Air compressor is an important facility with electric power in the industry. However, because of the noise and vibration of air compressor and is installed outside the building management difficulty. In this study, MCP (Micro Control Processor) to remote monitoring of the air compressor via the compressed air through improved quality and allows stable maintenance were designed. So, increase the productivity improvement of energy-saving effect can be obtained. Remote real-time information stored on your PC to manage air compressor equipment was higher reliability. Monitoring system is developed in this study was applied to embedded systems. It is easy to install air compressor, and low maintenance costs was to raise the economic impact.

Development of OPC UA based Smart Factory Digital Twin Testbed System (OPC UA 기반 스마트팩토리 디지털 트윈 테스트베드 시스템 개발)

  • Kim, Jaesung;Jeong, Seok Chan;Seo, Dongwoo;Kim, Daegi
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.8
    • /
    • pp.1085-1096
    • /
    • 2022
  • The manufacturing industry is continuously pursuing advanced technology and smartization as it converges with innovative technology. Improvement of manufacturing productivity is achieved by monitoring, analyzing, and controlling the facilities and processes of the manufacturing site in real time through a network. In this paper, we proposed a new OPC-UA based digital twin model for smart factory facilities. A testbed system for USB flash drive packaging facility was implemented based on the proposed digital twin model and OPC-UA data communication scheme. Through OPC-UA based digital twin model, equipment and process status information is transmitted and received from PLC to monitoring and control 3D digital models and physical models in real time. The usefulness of the developed digital twin testbed system was evaluated through usability test.

Disaster Prevention Technology in Response to Flooded Areas Using Drone Image-Based Inundation Monitoring and Prefabricated Rainwater Penetration Storage Block Structure (드론영상 기반 침수 모니터링 및 조립식 빗물 침투 저류블록 구조를 활용한 상습 침수지역 대응 방재기술)

  • Choi, Hee-Yong;Choi, Hyeong-Gil;Ryu, Jung-Rim;Kim, Won-Chang;Lee, Tae-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.411-412
    • /
    • 2023
  • The purpose of this research and development is to develop a structure module that improves the efficiency and constructability of the layout structure as well as the design development of rainwater permeable storage tank blocks using inorganic binders and aggregates with the aim of reducing greenhouse gas (CO2) with eco-friendly materials. In addition, for the efficient response to flooding of the developed permeable storage structure, we present a technical solution for combining drone mapping technology and flood monitoring technology that can analyze topographical factors in detail.

  • PDF

Evaluation of Flow Accelerated Corrosion of Carbon Steel with Rotating Cylinder (Rotating cylinder를 이용한 탄소강의 유동가속부식 평가)

  • Park, Tae Jun;Lee, Eun Hee;Kim, Kyung Mo;Kim, Hong Pyo
    • Corrosion Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.257-262
    • /
    • 2012
  • Flow accelerated corrosion (FAC) of the carbon steel piping in nuclear power plants (NPPs) has been major issue in nuclear industry. Rotating cylinder FAC test facility was designed and fabricated and then performance of the facility was evaluated. The facility is very simple in design and economic in fabrication and can be used in material and chemistry screening test. The facility is equipped with on line monitoring of pH, conductivity, dissolved oxygen(DO), and temperature. Fluid velocity is controlled with rotating speed of the cylinder with a test specimen. FAC test of SA106 Gr. B carbon steel under 4 m/s flow velocity was performed with the rotating cylinder at DO concentration of less than 1 ppb and of 1.3 ppm. Also a corrosion test of the carbon steel at static condition, that is at zero fluid velocity, of test specimen and solution was performed at pH from 8 to 10 for comparison with the FAC data. For corrosion test in static condition, the amount of non adherent corrosion product was almost constant at pH ranging from 8 to 10. But adherent corrosion product decreased with increasing pH. This trend is consistent with decrease of Fe solubility with an increase in pH. For FAC test with rotating cylinder FAC test facility, the amount of non adherent corrosion product was also almost same for both DO concentrations. The rotating cylinder FAC test facility will be further improved by redesigning rotating cylinder and FAC specimen geometry for future work.

An Environment Information Management System for Cultivation in Agricultural Facilities using Augmented Reality (증강현실 기반 농업용 환경 정보 관리 시스템)

  • Kim, Min-ji;Kim, Jong-Ho;Koh, Jin-Gwang;Lee, Sung-Keun;Lee, Jae-Hak
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.113-121
    • /
    • 2018
  • In this study, an augmented reality(AR)-based information management system for agricultural facility is proposed. Using a variety of sensed data transmitted by Lora-based wireless networks deployed at the agricultural facility, this system is capable of augmenting the sensed data and displaying them on the user's smartphone screen to provide visualized information to user. When users point their smartphone camera to the agricultural facility, the environment information collected from numerous sensors installed at the facility would be visualized and appear on the screen. Unlike traditional system which requires user to search a specific facility and then select sensor(s) to obtain the environment information, the proposed system shows the information on smartphone screen by augmenting it with real image captured by camera without doing a series of time-taking selection process. Since the way of acquiring information is through image or video, this system contributes to convenient monitoring and efficient management for agricultural facility.

Development of Hard-wired Instrumentation and Control for the Neutral Beam Test Facility at KAERI

  • Jung Ki-Sok;Yoon Byung-Joo;Yoon Jae-Sung;Seo Min-Seok
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.359-365
    • /
    • 2006
  • Since the start of the KSTAR (Korea Superconducting Tokamak Advanced Research) project, Instrumentation and Control (I&C) of the Neutral Beam Test Facility (NB-TF) has been striving to answer diverse requests arising from various facets during the project's development and construction phases. Hard-wired electrical circuits have been designed, tested, fabricated, and finally installed to the relevant parts of the system. In relation to the vacuum system I&C, controlling functions for the rotary pumps, a Roots pump, two turbomolecular pumps, and four cryosorption pumps have been constructed. I&C for the ion source operation are the temperature and flow rate signal monitoring, Langmuir probe signal measurements, gradient grid current measurements, and arc detector circuit. For the huge power system to be monitored or safely operated, many temperature measurement functions have also been implemented for the beam line components like the neutralizer, bending magnet, ion dump, and calorimeter. Nearly all of the control and probe signals between the NB test stand and the control room were made to be transmitted through the optical cables. Failures of coolant flow or beam line vacuum pressure were made to be safely blocked from influencing the system by an appropriate interlock circuit that will shut down the extraction voltage application to the system or prevent damages to the vacuum components. Preliminary estimation of the beam power through the calorimetric measurement shows that 87.9% of the total power of the 60kV/18A beam with 200 seconds duration is absorbed by the calorimeter surface. Most of these I&C results would be highly appropriate for the construction of the main NBI facility for the KSTAR national fusion research project.

Evaluation of Short-Term Exposure Levels on Ammonia and Hydrogen Sulfide During Manure-Handling Processes at Livestock Farms

  • Park, Jihoon;Kang, Taesun;Heo, Yong;Lee, Kiyoung;Kim, Kyungran;Lee, Kyungsuk;Yoon, Chungsik
    • Safety and Health at Work
    • /
    • v.11 no.1
    • /
    • pp.109-117
    • /
    • 2020
  • Background: Ammonia and hydrogen sulfide are harmful gases generated during aerobic/anaerobic bacterial decomposition of livestock manure. We evaluated ammonia and hydrogen sulfide concentrations generated from workplaces at livestock farms and determined environmental factors influencing the gas concentrations. Methods: Five commercial swine farms and five poultry farms were selected for monitoring. Real-time monitors were used to measure the ammonia and hydrogen sulfide concentrations and environmental conditions during the manure-handling processes. Monitoring was conducted in the manure storage facility and composting facility. Information on the farm conditions was also collected through interview and walk-through survey. Results: The ammonia concentrations were significantly higher at the swine composting facilities (9.5-43.2 ppm) than at other manure-handling facilities at the swine and poultry farms, and high concentrations of hydrogen sulfide were identified during the manure agitation and mixing process at the swine manure storage facilities (6.9-19.5 ppm). At the poultry manure-handling facilities, the ammonia concentration was higher during the manure-handling processes (2.6-57.9 ppm), and very low hydrogen sulfide concentrations (0-3.4 ppm) were detected. The air temperature and relative humidity, volume of the facility, duration of manure storage, and the number of animals influenced the gas concentrations. Conclusion: A high level of hazardous gases was generated during manure handling, and some levels increased up to risk levels that can threaten workers' health and safety. Some of the farm operational factors were also found to influence the gas levels. By controlling and improving these factors, it would be possible to protect workers' safety and health from occupational risks.