• Title/Summary/Keyword: facilitated modeling

Search Result 53, Processing Time 0.026 seconds

Identification and Multivariable Iterative Learning Control of an RTP Process for Maximum Uniformity of Wafer Temperature

  • Cho, Moon-Ki;Lee, Yong-Hee;Joo, Sang-Rae;Lee, Kwang-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2606-2611
    • /
    • 2003
  • Comprehensive study on the control system design for a RTP process has been conducted. The purpose of the control system is to maintain maximum temperature uniformity across the silicon wafer achieving precise tracking for various reference trajectories. The study has been carried out in two stages: thermal balance modeling on the basis of a semi-empirical radiation model, and optimal iterative learning controller design on the basis of a linear state space model. First, we found through steady state radiation modeling that the fourth power of wafer temperatures, lamp powers, and the fourth power of chamber wall temperature are related by an emissivity-independent linear equation. Next, for control of the MIMO system, a state space modeland LQG-based two-stage batch control technique was derived and employed to reduce the heavy computational demand in the original two-stage batch control technique. By accommodating the first result, a linear state space model for the controller design was identified between the lamp powers and the fourth power of wafer temperatures as inputs and outputs, respectively. The control system was applied to an experimental RTP equipment. As a consequence, great uniformity improvement could be attained over the entire time horizon compared to the original multi-loop PID control. In addition, controller implementation was standardized and facilitated by completely eliminating the tedious and lengthy control tuning trial.

  • PDF

Modeling Bacteria Facilitated Contaminant Transport in Porous Media with Kinetic Adsorption Relationships (동역학적 흡착 관계식을 이용한 다공 매질에서의 유동세균에 의한 유기성 오염물의 가속이송 예측 모델)

  • 김승현
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.1
    • /
    • pp.22-29
    • /
    • 1995
  • Mobile bacterial particles can act as carriers and enhance the transport of hydrophobic contaminants in ground water by reducing retardation effects. Because of their colloidal size and favorable surface conditions, bacteria can act as efficient contaminant carriers. When such carriers exist in a porous medium, the system can be thought of as three phases: an aqueous phase, a carrier phase, and a stationary solid matrix phase. Contaminant can be present in either or all of these phases. In this study, a mathematical model based on mass balances is developed to describe the transport and fate of biodegradable contaminant in a porous medium. Bacterial mass transfer mechanism between aqueous and solid matrix phases, and contaminant mass transfer between aqueous and bacterial phases are represented by kinetic models. Governing equations are non-dimensionalized and solved to analyze the bacteria facilitated contaminant transport. The numerical results of the facilitation effect match favorably with experimental data reported in the literature. Results show that the contaminant transport can be described by local equilibrium assumption when Damkohler numbers are larger than 10. Significant sensitivities to model parameters, particularly bacterial growth rate and influent bacterial concentration, were discovered.

  • PDF

Modeling Bacteria Facilitated Contaminant Transport in Porous Media with Equilibrium Adsorption Relationships (평형 모델을 이용한 다공매질에서의 유동 세균에 의한 유기성 오염물의 가속이송)

  • 신항식;김승현
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.2 no.1
    • /
    • pp.14-21
    • /
    • 1995
  • Colloids such as exogenous biocolloids in a bioremediation operation can enhance the transport of contaminant in ground water by reducing retardation effects. Because of their colloidal size and favorable surface conditions in addition to their low density, bacteria can act as efficient contaminant carriers. When mobile bacteria are present in a subsurface environment, the system can be treated as consisting of three phases: water phase, bacterial phase, and the stationary solid matrix phase. In this work, a mathematical model based on mass balances is developed to describe the facilitated transport and fate of a contaminant in a porous medium. Bacterial partition between the bulk solution and the stationary solid matrix, and the contaminant partition among the three phases are represented by the equilibrium relationships. Solutions were obtained to provide estimates of contaminant and bacterial concentrations. A dimensionless analysis of the transport model was utilized to estimate model parameters from the experimental data. The model results matched with experimental data of Jenkins and Lion (1993). The presence of mobile bacteria enhances the contaminant transport. However, bacterial consumption of the contaminant which serves as a bacterial nutrient, can attenuate the contaminant concentration.

  • PDF

Investigating Children's Informal Knowledge and Strategies: The Case of Fraction Division

  • Yeo, Sheunhyun
    • Research in Mathematical Education
    • /
    • v.22 no.4
    • /
    • pp.283-304
    • /
    • 2019
  • This paper investigates what informal knowledge and strategies fifth-grade students brought to a classroom and how much they had potential to solve fraction division story problems. The findings show that most of the participants were engaged to understand the meaning of fraction division prior to their formal instruction at school. In order to solve the story problems, the informal knowledge related to fractions as well as division was actively utilized in student's strategies and justification. Students also used various informal strategies from mental calculation, direct modeling, to relational thinking. Formal instructions about fraction division at schools can be facilitated for sense-making of this complex fraction division conception by unpacking informal knowledge and thinking they might bring to the classrooms.

Effects of Media Integration on Users' Parasocial Relationship and Political Participation in China

  • Du, Zilin;Lee, Jong Hyuk
    • International Journal of Contents
    • /
    • v.18 no.2
    • /
    • pp.18-31
    • /
    • 2022
  • This study explored the effects of the parasocial relationship formed by CCTV (China Central Television) TV news and non-traditional news on users' perceived media credibility and their online and offline political participation. This study conducted a survey with the Chinese CCTV users between April 19 and April 30, 2021, and finally, 701 respondents' data were analyzed using structural equation modeling. The study results showed that both TV news and non-traditional news had positive effects on parasocial relationships and the parasocial relationship positively influenced media credibility, which subsequently facilitated political participation. However, there was no direct effect between media usage and media credibility. This implies the important mediating role of parasocial interactions, which enables CCTV news to gain media credibility and subsequently influence political participation. This study suggests that CCTV needs to improve the parasocial interactions between their audience and media figures by utilizing the interactive mechanism of non-traditional media.

A Framework of Building Knowledge Representation for Sustainability Rating in BIM

  • Shahaboddin Hashemi Toroghi;Tang-Hung. Nguyen;Jin-Lee. Kim
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.437-443
    • /
    • 2013
  • Recently, sustainable building design, a growing field within architectural design, has been emerged in the construction industry as the practice of designing, constructing, and operating facilities in such a manner that their environmental impact, which has become a great concern of construction professionals, can be minimized. A number of different green rating systems have been developed to help assess that a building project is designed and built using strategies intended to minimize or eliminate its impact on the environment. In the United States, the widely accepted national standards for sustainable building design are known as the LEED (Leadership in Energy and Environmental Design) Green Building Rating System. The assessment of sustainability using the LEED green rating system is a challenging and time-consuming work due to its complicated process. In effect, the LEED green rating system awards points for satisfying specified green building criteria into five major categories: sustainable sites, water efficiency, energy and atmosphere, materials and resources, and indoor environmental quality; and sustainability of a project is rated by accumulating scores (100 points maximum) from these five major categories. The sustainability rating process could be accelerated and facilitated by using computer technology such as BIM (Building Information Modeling), an innovative new approach to building design, engineering, and construction management that has been widely used in the construction industry. BIM is defined as a model-based technology linked with a database of project information, which can be accessed, manipulated, and retrieved for construction estimating, scheduling, project management, as well as sustainability rating. This paper will present a framework representing the building knowledge contained in the LEED green building criteria. The proposed building knowledge framework will be implemented into a BIM platform (e.g. Autodesk Revit Architecture) in which sustainability rating of a building design can be automatically performed. The development of the automated sustainability rating system and the results of its implementation will be discussed.

  • PDF

An Extension of Theory of Planned Behavior for in-App Advertisements: The Case of Vietnamese Young Mobile Users

  • Tapanainen, Tommi;Dao, Trung Kien;Nguyen, Thi Thanh Hai;Pham, Thi Anh Duong;Nguyen, Danh Nguyen
    • Journal of Information Technology Applications and Management
    • /
    • v.27 no.1
    • /
    • pp.147-171
    • /
    • 2020
  • In-app advertisement is a fast-growing trend in mobile advertising, where user acceptance of ads is facilitated by the fact that users have voluntarily downloaded the app through which the ad is served. However, research in this ad category is limited. This study applies an extended version of the theory of planned behavior. Analysis results from 412 young mobile users in Vietnam using structural equation modeling showed that while localization and perceived enjoyment affected user intention to watch in-app ads as expected, perceived behavioral control and trust did not. Such results may be due to embedding the ads to applications, confusing users' behavioral intentions. The results underline the need for more future research in the area. In practical terms, companies should improve localization and entertainment aspects of ads to create more relevant and engaging advertisements.

Self-consistent Solution Method of Multi-Subband BTE in Quantum Well Device Modeling (양자 우물 소자 모델링에 있어서 다중 에너지 부준위 Boltzmann 방정식의 Self-consistent한 해법의 개발)

  • Lee, Eun-Ju
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.2
    • /
    • pp.27-38
    • /
    • 2002
  • A new self-consistent mathematical model for semiconductor quantum well device was developed. The model was based on the direct solution of the Boltzmann transport equation, coupled to the Schrodinger and Poisson equations. The solution yielded the distribution function for a two-dimensional electron gas(2DEG) in quantum well devices. To solve the Boltzmann equation, it was transformed into a tractable form using a Legendre polynomial expansion. The Legendre expansion facilitated analytical evaluation of the collision integral, and allowed for a reduction of the dimensionality of the problem. The transformed Boltzmann equation was then discretized and solved using sparce matrix algebra. The overall system was solved by iteration between Poisson, Schrodinger and Boltzmann equations until convergence was attained.

Finite element analysis of RC walls with different geometries under impact loading

  • Husem, Metin;Cosgun, Suleyman I.;Sesli, Hasan
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.583-592
    • /
    • 2018
  • Today, buildings are exposed to the effects such as explosion and impact loads. Usually, explosion and impact loads that act on the buildings such as nuclear power plants, airports, defense industry and military facilities, can occur occasionally on the normal buildings because of some reasons like drop weight impacts, natural gas system explosions, and terrorist attacks. Therefore, it has become important to examine the behavior of reinforced concrete (RC) structures under impact loading. Development of computational mechanics has facilitated the modeling of such load conditions. In this study, three kinds of RC walls that have different geometric forms (square, ellipse, and circle) and used in guardhouses with same usage area were modeled with Abaqus finite element software. The three configurations were subjected to the same impact energy to determine the geometric form that gives the best behavior under the impact loading. As a result of the analyses, the transverse impact forces and failure modes of RC walls under impact loading were obtained. Circular formed (CF) reinforced concrete wall which has same impact resistance in each direction had more advantages. Nonetheless, in the case of the impact loading occurring in the major axis direction of the ellipse (EF-1), the elliptical formed reinforced concrete wall has higher impact resistance.

The Adaptive Backstepping Controller of RBF Neural Network Which is Designed on the Basis of the Error (오차를 기반으로한 RBF 신경회로망 적응 백스테핑 제어기 설계)

  • Kim, Hyun Woo;Yoon, Yook Hyun;Jeong, Jin Han;Park, Jahng Hyon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.34 no.2
    • /
    • pp.125-131
    • /
    • 2017
  • 2-Axis Pan and Tilt Motion Platform, a complex multivariate non-linear system, may incur any disturbance, thus requiring system controller with robustness against various disturbances. In this study, we designed an adaptive backstepping compensated controller by estimating the disturbance and error using the Radial Basis Function Neural Network (RBF NN). In this process, Uniformly Ultimately Bounded (UUB) was demonstrated via Lyapunov and stability was confirmed. By generating progressive disturbance to the irregular frequency and amplitude changes, it was verified for various environmental disturbances. In addition, by setting the RBF NN input vector to the minimum, the estimated disturbance compensation process was analyzed. Only two input vectors facilitated compensatory function of RBF NN via estimating the modeling and control error values as well as irregular disturbance; the application of the process resulted in improved backstepping controller performance that was confirmed through simulation.