• Title/Summary/Keyword: facies

Search Result 345, Processing Time 0.028 seconds

Formation and Evolution of the Paleo-Seomjin River Incised-Valley System, Southern Coast of Korea: 1. Sequence Stratigraphy of Late Quaternary Sediments in Yosu Strait (한반도 남해안 고섬진강 절개곡 시스템의 형성과 진화: 1. 여수해협의 후기 제 4기층에 대한 순차층서)

  • Chun, Seung-Soo;Chang, Jin-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.142-151
    • /
    • 2001
  • Detailed interpretation of some high-resolution seismic profiles in Yosu Strait reveals that Late Quaternary deposits consist of three allostratigraphic units (UH, LH, PL) formed by fluvial and tidal controls. The top mud unit, UH, thins onshore, and overlies the backstepping modem Seomjin delta deposits, which is interpreted as a transgressive systems tract (757) related to Holocene relative sea-level rise. The unit LH below the unit UH is composed of delta, valley- and basin-fill facies. The delta facies (Unit $LH_1$) occurs only in Gwangyang Bay and shows two prograding sets retrogradationaly stacked, thus it is also interpreted as a transgressive systems tract(757). On the contrary, the valley- and basin-fill facies (Unit $LH_2$), interpreted as 757, occur between the units UH and PL (Pleistocene deposits) in Yosu Strait. The bounding surface between UH and $LH_2$ can be interpreted as a tidal ravinement surface on the basis of trends thinning toward inner bay and becoming young landward. Furthermore its geomorphological pattern is similar to that of recent tidal channels. This allostratigraphy in'ffsu Strait suggests that two 757 deposits (UH and $LH_2$), divided by tidal ravinement surface, have been formed in Yosu Strait, whereas in Gwangyang Bay backstepping delta deposits ($LH_1$) without tidal ravinement surface have been formed during Holocene sea-level rise. These characteristics indicate that different stacking patterns could be formed in these two areas according to different increasing rate of accommodation space caused by different geomorphology, sediment supply and tidal-current patterns even in the same period of Holocene sea-level rise.

  • PDF

The Contact Metamorphism Due to the Intrusion of the Ogcheon and Boeun granites (옥천화강암과 보은화강암 관입에 의한 접촉변성작용)

  • 오창환;김창숙;박영도
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.133-149
    • /
    • 1997
  • In the metapelites around the Ogcheon granite, the metamorphic grade increases from the biotite zone through the andalusite zone to the sillimanite zone towards the intrusion contact. In the metabasites around the Boeun granite, the metamorphic grade increases from transitional zone between the greenchist and amphibolite facies through the amphibolite facies to the upper amphibolite facies towards the intrusion contact. In the Doiri area locating near the intrusion contact of the Boeun granite, sillimanite- and andalusite-bearing metapelites are found with in 500 m away from the contact. The evidence described above indicates that the Ogcheon and Boeun granites caused low-P/T type contact metamorphism to the country rocks. The P-T condition of contact metamorphism due to the intrusion of the Ogcheon granite is $540{\pm}40^{circ}C, 2.8{\pm}0.9$ kb. The temperature condition of contact metamorphism due to the intrusion of the Boeun granite is $698{\pm}28^{\circ}C$. The wide compositional range of amphibole and plagioclase in the metabasites around the Boeun granite is due to the immisibility gab of amphibole and plagioclase and unstable relict composition resulted from an incomplete metamorphic reaction. The compositional range of stable amphibole and plagioclase decreases as a metamorphic grade increases due to a close of immiscibility gab. The thermal effect of contact metamorphism due to the intrusion of the Ogcheon and Boeun granites, are calculated using the CONTACT2 program based on a two dimensional finite difference method. In order to estimate the thermal effect of an introduced pluton, a circle with 10 km diameter and a triangle with 20 km side are used for the intrusion geometries of the Ogcheon granite and the Boeun granite, respectively. The results from the field and modeling studies suggest that the intrusion temperatures of the Ogcheon granite close to $800^{\circ}C$ and the intrusion temperature of the Boeun granite is higher than $1000^{\circ}C$. However, the intrusion temperatures can be lower than the suggested temperature, if the geothermal gradient prior to the intrusion of the Ogcheon and Boeun granites was higher than the normal continental grothermal gradient.

  • PDF

Seasonal Variation of Surface Sediments in 2014 on the Gochang Open-Coast Intertidal Flat, Southwestern Korea (고창 개방형 조간대 표층 퇴적물의 2014년 계절 변화)

  • Kang, Sol-Ip;Ryang, Woo-Hun;Jin, Jae-Hwa;Chun, Seung-Soo
    • Journal of the Korean earth science society
    • /
    • v.37 no.2
    • /
    • pp.89-106
    • /
    • 2016
  • The Gochang open-coast intertidal flat is located in the southwestern coast of Korea (the eastern part of the Yellow Sea), characterized by macro-tidal range, an open-coast type, and sand substrates. This study has investigated seasonal variation in sedimentary facies of surface sediments in the Gochang intertidal flat. In the four seasons of February, May, August, and November, 2014, surface sediments of 252 sites in total were sampled and analyzed along three survey lines. The surface sediments of the Gochang intertidal flat in 2014 consisted mainly of fine-grained sand sediments showing a trend in grain size to be coarser in winter and finer in summer. Based on seasonal wave and tidal level data recorded near the study area, it was interpreted that the seasonal effects of wave were stronger than those of tide as a factor controlling surface sedimentation. High waves in winter resulted in the coarsening trend of grain size in surface sediments, whereas, during summer time, the sediments became finer by relatively low waves. Spatial sedimentary facies of the Gochang intertidal flat in 2014 represented that seasonal deviation of the upper tidal zone was larger than that of the lower tidal zone, hence sediments getting coarser in grain size and poorly sorted in the upper tidal zone. From upper to lower tidal zone, the grain size became finer and sediments were better-sorted, showing smaller seasonal deviations.

Geochemical Characteristics of the Outer-Shelf Muddy Sediments in the East China Sea (동중국해 외대륙붕해역 니질퇴적물의 지화학적 특성)

  • Youn, Jeung-Su;Byun, Jong-Cheol;Kim, Yeo-Sang
    • Journal of the Korean earth science society
    • /
    • v.27 no.2
    • /
    • pp.198-208
    • /
    • 2006
  • To investigate the provenance of outer-shelf mud patch in the East China Sea, the geochemical compositions were analyzed and compared with those of Chinese rivers sediments. The mud sedimentary facies are distributed in the central region and sandy mud facies are also widely distributed around the study area. The major elements (Fe, Mg, K, Ti, and Mn) show strong positive correlation with Al, and trace elements also indicate the same characteristics; hence, clay minerals are likely to be the promising host for those elements. The high concentration of Fe, Ti, and Mn elements are found in the western middle part near the Changjiang estuary, indicating that it seems to result from the influence of the Changjiang River. Elemental ratios including Sc/Al, Ti/Nb, Th/Sc, Cr/Th, Nb/Co, and Th/U were thus used as provenance indicators to identify the sediment origins of the East China Sea. The discrimination diagrams clearly show that most of the sediment in the northern part are originated from the Huanghe River, while the muddy sediments in the western part near the Changjiang estuary might come from the Changjiang River, suggesting that the outer-shelf muddy sediments of East China Sea are originated from diverse sources.

Sedimentologic Linkage of depositional environments of Han River and Kyunggi Bay, Korea (한강 유역과 경기만 퇴적환경의 연계성)

  • 오재경;방기영
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.3
    • /
    • pp.225-236
    • /
    • 2003
  • In order to understand the relationship of depositional environment between fluvial and estuarine-embayment in Han River system, including depositional change in main Han River, more than 250 bottom sediment and 70 suspended sediment were analyzed with hydrologic data. Based on the previous data, the study area can be divided into two environment(fluvial and estuarine-embayment) by Singok underwater dam. The gravelly facies occurs in the South and North Han Rivers and sandy and silty facies occupies in the main Han River. Depositional environment of main Han River changed mainly because of limited sediment transport and hydrological condition. In the estuarine-embayment environment, coarse-grained sediments are dominant in tidal channel and of shore whereas fine and poorly sorted sediments are observed in coastal area. During moderate period, relationship between fluvial-estuarine-embayment system is discontinuou s because of flow restriction by artificial construction such as dam and underwater dam, so that each river system characterizes the individual environment. Fluvial and estuarine system is influenced by tide and, thus, transition zone of estuarine- embayment system moves landward. During flooding period, however, each river system is integrated as continuous depositional system by high discharge and, thus, transition zone of fluvial-estuarine-embayment system moves seaward. For further detailed systems about the lower Singok under-water dam, joint research of South-North Korea should be necessary.

Genetic Implications of Ultramafic Rocks from the Bibong Area in the Kyeonggi Gneiss Complex (경기편마암복합체내 비봉지역에 분포하는 초염기성암에 대한 성인적 적용)

  • Song, Suck Hwan;Choi, Seon Gyu;Woo, Jun Gie
    • Economic and Environmental Geology
    • /
    • v.30 no.5
    • /
    • pp.477-491
    • /
    • 1997
  • In the Bibong area of the western part of Chungcheongnam-do, ultramafic masses occur as discontinuous isolated lenticular bodies in the Precambrian Kyeonggi gneiss complex. They extend for about 200 m long to NNE directions which are parallel to fault lines in the gneiss complex. The ultramafic masses contact with the adjacent gneiss complex as steeply dipping faults. They are dunites and harzburgites and many of them are partially or completely serpentinized. The ultramafic rocks dominantly show protogranular, equigranular and equigranular-$m{\grave{o}}saic$ textures. They also show porphyroclastic (megacrystic) or recrystallized textures reflecting several stages of metamorphism. They contain varying amounts of olivine $(Fo_{89-92})$, enstatitic to bronzitic orthopyroxene, diopsidic clinopyroxene, tremolitic to pargasitic hornblende, and spinel with serpentine, talc, chlorite, calcite and magnetite. The ultramafic rocks have high magnesium numbers and transitional element contents, low alkali contents and show deplete REE patterns. Comparing with available data, geochemical and mineralogical characteristics shown in the ultramafic rocks of the Bibong area are similar to those of worldwide mantle xenoliths and orogenic related ultramafic rocks. The field evidences, petrographical, geochemical and mineralogical characteristics shown in the ultramafic rocks of the Bibong area are similar to alpine type ultramafic rocks emplaced into the crust by the faulting as mantle slab types. With the petrographical characteristics, these mineralogical compositions suggest that the ultramafic rocks of the Bibong area have experienced several stages of retrogressive metamorphism in a condition ranging from the upper amphibolite facies to greenschist facies.

  • PDF

The Comparison of Influence of Difficulties in Nasal Breathing on Dentition between Different Facial Types (비호흡 장애가 치열에 미치는 영향에 관한 안모 형태별 비교 연구)

  • Lee, Myeong-Jin;Lee, Chang-Kon;Kim, Jong-Sup;Park, Jin-Ho;Chin, Byung-Rho;Lee, Hee-Kyung
    • Journal of Yeungnam Medical Science
    • /
    • v.10 no.1
    • /
    • pp.37-47
    • /
    • 1993
  • It is commonly assumed that nasorespiratory function can exert a dramatic effect upon the development of the dentofacial complex. Specially, it has been stated that chronic nasal obstruction leads to mouth breathing, which causes altered tongue and mandibular positions. If this occurs during a period of active growth, the outcome is development of the "adenoid facies". Such patients characteristically manifest a vertically long lower third facial height, narrow alar bases, lip incompetence, a long and narrow maxillary arch and a greater than normal mandibular plane angle. But several authors have reported that so-called adenoid facies is not always associated with adenoids and mouth breathing, and that a particular type of dentition is not always found in mouth breathers with or without adenoids. Some authors have believed adenoids lead to mouth breathing in cases with particular facial characteristics and types of dentition. We assumed that the ability to adapt to individual's neuromuscular complex is various. So, we compared the difference of influence of mouth breathing between childrens who have different facial types. This study included 60 patients and they were divided into three groups by Rickett's facial type. Their dentition and tongue position were compared. The results are as follows. 1. There is a significant difference in arch width of upper molars between different facial types. Especially dolichofacial type patients have narrowest arch width. 2. There is a significant difference in tongue position between different facial types. Especially dolichofacial type patients have lowest positioned tongue.

  • PDF

Geochemical Properties of Deep Sea Sediment in the Benthic Environmental Impact Experiment Site (BIS) of Korea (심해 저층환경충격 시험지역의 퇴적물 지화학적 특성)

  • Kong, Gee Soo;Hyeong, Kiseong;Choi, Hun-Soo;Chi, Sang-Bum
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.407-421
    • /
    • 2014
  • The benthic environmental impact experiment addresses environmental impacts at a specific site related to deep-sea mineral resource development. We have acquired several tens of multi- or box core samples at 31 sites within the Benthic environmental Impact Site (BIS) since 2010, aiming to examine the basic properties of surficial deep-sea sediment as a potential source for deep-water plumes. In this study, we present the geochemical properties such as major elements, rare earth elements (REEs), and heavy metal contents at the BIS. Such proxies vary distinctly according to the Facies association. The lithology of all core sediments in the BIS corresponds to both Association Ib and Association IIIb. The vertical profiles of some major elements ($SiO_2$, $Fe_2O_3$, CaO, $P_2O_5$, MgO, MnO) show noticeable differences between Association Ib and IIIb, while others ($Al_2O_3$, $TiO_2$, $Na_2O$, and $K_2O$) do not vary between Association Ib and IIIb. REEs are also distinctly different for Associations Ib and IIIb; in Association Ib, REY and HREE/LREE are uniform through the sediment section, while they increase downward in Association IIIb like the major elements; below a depth of 8 cm, REY is over 500 ppm. The metal enrichment factor (EF) evaluates the anthropogenic influences of some metals (Cu, Ni, Pb, Zn, and Cd) in marine sediments. In both Associations, the EF for Cu is over 1.5, the EF for Ni and Pb ranges from 0.5 to 1.5, and the EF for Zn and Cd are less than 0.5, indicating Cu is enriched but Zn and Cd are relatively depleted in the BIS. The vertical variations of geochemical properties between Association Ib and IIIb are shown to be clearly different, which seems to be related to the global climate changes such as the shift of Intertropical convergence zone (ITCZ).

Metamorphism of gneiss complex in the Paju-Gimpo area, northwestern Gyeonggi massif, Korea (경기육괴 북서부의 파주-김포지역에 분포하는 편마암복합체의 변성작용)

  • Ahn, Kun-Sang;Park, Young-Seog;Kim, Cheong-Bin;Chen, Jiangfeng
    • The Journal of the Petrological Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.177-189
    • /
    • 1998
  • Proterozoic gneisss complex of the Paju-Gimpo area, Northwestern Gyeonggi Massif, consists of mainly gneiss and schist with locally intercalated quartzite and metamorphic calcareous rocks. Mineral assemblages of the gneiss and schist are classified into two type: sillimanite free (garnet zone) and sillimanite bearing (sillimanite zone) assemblages. In the Goyang area, Kyanite occurs as metastable relict grain in two gneiss samples, in which sillimanite, garnet, biotite, K-feldspar and plagioclase occur. Cordierite bearing mineral assemblages of gneiss are biotite+garnet+sillimanite+cordierite+plagioclase+quartz ($\pm$K-feldspar, muscovite), and represent the upper amphibolite or granulite facies metamorphism. The metamorphic complex has experienced two different regional metamorphism. The prograde metamorphism is a medium-pressure type characteries by kyanite. The peak metamorphic P-T condition of the prograde metamorphism calculated from the kyanite bearing rock is 7.0~9.4 kb and $718~778^{\circ}C$. The retrograde metamorphism, after the prograde metamorphism, is the low-pressure type characteries by occurrence of cordierite. The peak metamorphic P-T condition of later calculated from the cordierite bearing rock is 3.6~5.5 kb and $750~889^{\circ}C$. Together with the occurrence of relict kyanite, garnet+biotite+plagioclase assemblage as relict in the cordierite, and the result of estimated P-T metamorphic conditions indicate a clockwise P-T path.

  • PDF

The Marine Environment and Dinoflagellates Cysts in the Southwestern Sea of Korea (한국남서해역의 해양환경과 와편모조류 시스트 분포 특성)

  • Park, Jong-Sick;Yoon, Yang-Ho;Noh, Il-Hyeon;Soh, Ho-Young;Shin, Hyeon-Ho
    • ALGAE
    • /
    • v.23 no.2
    • /
    • pp.135-140
    • /
    • 2008
  • A field survey for dinoflagellate cysts was carried out from May 2000 to November 2002 for the Southwest Sea of Korea. A total dinoflagellate cysts identified were 33 species, which belonged to 17 genera, 31 species, and 2 unidentified species. A cysts density were 16-1,501 cysts-gdry$^{-1}$. The dominant species of dinoflagellate cysts in the Southwestern Sea of Korea were Spiniferites bulloideus and Scrippsiella trochoidea, which are autotrophic species. To investigate the environmental characteristics of the Southwestern Sea of Korea using the dinoflagellate cysts, a principal component analysis (PCA) was conducted using the data collected from a total of 51 stations. From the score distribution map by the PCA, the Southwestern Sea of Korea was largely divided into three regions according to the first primary component and the second primary component. In other words, Group 1 was the western sea area of Mokpo and Jindo, Group 2 was the outer sea area of the South Sea, and Group 3 was the coastal areas of the South Sea around the Archipelago. It was found that this division of sea area was influenced by effects of the sea environment of the coastal areas of Korea. The coastal areas of Mokpo and Jindo that belong to Group 1 were affected by the cold Yellow Sea water. The outer sea area of the central parts of the South Sea that belong to Group 2, which is the boundary between the Southern coastal water of Korea and the Tsushima warm water, was subject to the formation of temperature fronts throughout the year, while Group 3 was affected by the coastal waters of Korea. It was also found that this division was in close relationship with the distribution of sediment facies in the bottom layer. From the above results, the environmental factors that influence the cyst distribution in he Southwestern Sea of Korea were found to include the eutrophication status of the sea area, the physical characteristics of the sea environment such as the flow of sea current and fronts, the sediment facies in the bottom layer, and the appearance volume of motile cells.