• Title/Summary/Keyword: facial feature

Search Result 509, Processing Time 0.032 seconds

Robust Real-time Tracking of Facial Features with Application to Emotion Recognition (안정적인 실시간 얼굴 특징점 추적과 감정인식 응용)

  • Ahn, Byungtae;Kim, Eung-Hee;Sohn, Jin-Hun;Kweon, In So
    • The Journal of Korea Robotics Society
    • /
    • v.8 no.4
    • /
    • pp.266-272
    • /
    • 2013
  • Facial feature extraction and tracking are essential steps in human-robot-interaction (HRI) field such as face recognition, gaze estimation, and emotion recognition. Active shape model (ASM) is one of the successful generative models that extract the facial features. However, applying only ASM is not adequate for modeling a face in actual applications, because positions of facial features are unstably extracted due to limitation of the number of iterations in the ASM fitting algorithm. The unaccurate positions of facial features decrease the performance of the emotion recognition. In this paper, we propose real-time facial feature extraction and tracking framework using ASM and LK optical flow for emotion recognition. LK optical flow is desirable to estimate time-varying geometric parameters in sequential face images. In addition, we introduce a straightforward method to avoid tracking failure caused by partial occlusions that can be a serious problem for tracking based algorithm. Emotion recognition experiments with k-NN and SVM classifier shows over 95% classification accuracy for three emotions: "joy", "anger", and "disgust".

Facial Feature Extraction using Multiple Active Appearance Model (Multiple Active Appearance Model을 이용한 얼굴 특징 추출 기법)

  • Park, Hyun-Jun;Kim, Kwang-Baek;Cha, Eui-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1201-1206
    • /
    • 2013
  • Active Appearance Model(AAM) is one of the facial feature extraction techniques. In this paper, we propose the Multiple Active Appearance Model(MAAM). Proposed method uses two AAMs. Each AAM trains using different training parameters. It causes that each AAM has different strong points. One AAM complements the weak points in the other AAM. We performed the facial feature extraction on the 100 images to verify the performance of MAAM. Experiment results show that MAAM gives more accurate results than AAM with less fitting iteration.

A Realtime Expression Control for Realistic 3D Facial Animation (현실감 있는 3차원 얼굴 애니메이션을 위한 실시간 표정 제어)

  • Kim Jung-Gi;Min Kyong-Pil;Chun Jun-Chul;Choi Yong-Gil
    • Journal of Internet Computing and Services
    • /
    • v.7 no.2
    • /
    • pp.23-35
    • /
    • 2006
  • This work presents o novel method which extract facial region und features from motion picture automatically and controls the 3D facial expression in real time. To txtract facial region and facial feature points from each color frame of motion pictures a new nonparametric skin color model is proposed rather than using parametric skin color model. Conventionally used parametric skin color models, which presents facial distribution as gaussian-type, have lack of robustness for varying lighting conditions. Thus it needs additional work to extract exact facial region from face images. To resolve the limitation of current skin color model, we exploit the Hue-Tint chrominance components and represent the skin chrominance distribution as a linear function, which can reduce error for detecting facial region. Moreover, the minimal facial feature positions detected by the proposed skin model are adjusted by using edge information of the detected facial region along with the proportions of the face. To produce the realistic facial expression, we adopt Water's linear muscle model and apply the extended version of Water's muscles to variation of the facial features of the 3D face. The experiments show that the proposed approach efficiently detects facial feature points and naturally controls the facial expression of the 3D face model.

  • PDF

Real-time Recognition System of Facial Expressions Using Principal Component of Gabor-wavelet Features (표정별 가버 웨이블릿 주성분특징을 이용한 실시간 표정 인식 시스템)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.821-827
    • /
    • 2009
  • Human emotion can be reflected by their facial expressions. So, it is one of good ways to understand people's emotions by recognizing their facial expressions. General recognition system of facial expressions had selected interesting points, and then only extracted features without analyzing physical meanings. They takes a long time to find interesting points, and it is hard to estimate accurate positions of these feature points. And in order to implement a recognition system of facial expressions on real-time embedded system, it is needed to simplify the algorithm and reduce the using resources. In this paper, we propose a real-time recognition algorithm of facial expressions that project the grid points on an expression space based on Gabor wavelet feature. Facial expression is simply described by feature vectors on the expression space, and is classified by an neural network with its resources dramatically reduced. The proposed system deals 5 expressions: anger, happiness, neutral, sadness, and surprise. In experiment, average execution time is 10.251 ms and recognition rate is measured as 87~93%.

Dynamic Facial Expression of Fuzzy Modeling Using Probability of Emotion (감정확률을 이용한 동적 얼굴표정의 퍼지 모델링)

  • Kang, Hyo-Seok;Baek, Jae-Ho;Kim, Eun-Tai;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.1-5
    • /
    • 2009
  • This paper suggests to apply mirror-reflected method based 2D emotion recognition database to 3D application. Also, it makes facial expression of fuzzy modeling using probability of emotion. Suggested facial expression function applies fuzzy theory to 3 basic movement for facial expressions. This method applies 3D application to feature vector for emotion recognition from 2D application using mirror-reflected multi-image. Thus, we can have model based on fuzzy nonlinear facial expression of a 2D model for a real model. We use average values about probability of 6 basic expressions such as happy, sad, disgust, angry, surprise and fear. Furthermore, dynimic facial expressions are made via fuzzy modelling. This paper compares and analyzes feature vectors of real model with 3D human-like avatar.

Reconstruction from Feature Points of Face through Fuzzy C-Means Clustering Algorithm with Gabor Wavelets (FCM 군집화 알고리즘에 의한 얼굴의 특징점에서 Gabor 웨이브렛을 이용한 복원)

  • 신영숙;이수용;이일병;정찬섭
    • Korean Journal of Cognitive Science
    • /
    • v.11 no.2
    • /
    • pp.53-58
    • /
    • 2000
  • This paper reconstructs local region of a facial expression image from extracted feature points of facial expression image using FCM(Fuzzy C-Meang) clustering algorithm with Gabor wavelets. The feature extraction in a face is two steps. In the first step, we accomplish the edge extraction of main components of face using average value of 2-D Gabor wavelets coefficient histogram of image and in the next step, extract final feature points from the extracted edge information using FCM clustering algorithm. This study presents that the principal components of facial expression images can be reconstructed with only a few feature points extracted from FCM clustering algorithm. It can also be applied to objects recognition as well as facial expressions recognition.

  • PDF

Development of Emotional Feature Extraction Method based on Advanced AAM (Advanced AAM 기반 정서특징 검출 기법 개발)

  • Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.834-839
    • /
    • 2009
  • It is a key element that the problem of emotional feature extraction based on facial image to recognize a human emotion status. In this paper, we propose an Advanced AAM that is improved version of proposed Facial Expression Recognition Systems based on Bayesian Network by using FACS and AAM. This is a study about the most efficient method of optimal facial feature area for human emotion recognition about random user based on generalized HCI system environments. In order to perform such processes, we use a Statistical Shape Analysis at the normalized input image by using Advanced AAM and FACS as a facial expression and emotion status analysis program. And we study about the automatical emotional feature extraction about random user.

Facial Feature Extraction by using a Genetic Algorithm (유전자 알고리즘을 이용한 얼굴의 특징점 추출)

  • Kim, Sang-Kyoon;Oh, Seung-Ha;Lee, Myoung-Eun;Park, Soon-Young
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.1053-1056
    • /
    • 1999
  • In this paper we propose a facial feature extraction method by using a genetic algorithm. The method uses a facial feature template to model the location of eyes and a mouth, and genetic algorithm is employed to find the optimal solution from the fitness function consisting of invariant moments. The simulation results show that the proposed algorithm can effectively extract facial features from face images with variations in position, size, rotation and expression.

  • PDF

Analogical Face Generation based on Feature Points

  • Yoon, Andy Kyung-yong;Park, Ki-cheul;Oh, Duck-kyo;Cho, Hye-young;Jang, Jung-hyuk
    • Journal of Multimedia Information System
    • /
    • v.6 no.1
    • /
    • pp.15-22
    • /
    • 2019
  • There are many ways to perform face recognition. The first step of face recognition is the face detection step. If the face is not found in the first step, the face recognition fails. Face detection research has many difficulties because it can be varied according to face size change, left and right rotation and up and down rotation, side face and front face, facial expression, and light condition. In this study, facial features are extracted and the extracted features are geometrically reconstructed in order to improve face recognition rate in extracted face region. Also, it is aimed to adjust face angle using reconstructed facial feature vector, and to improve recognition rate for each face angle. In the recognition attempt using the result after the geometric reconstruction, both the up and down and the left and right facial angles have improved recognition performance.

Feature Extraction Method of 2D-DCT for Facial Expression Recognition (얼굴 표정인식을 위한 2D-DCT 특징추출 방법)

  • Kim, Dong-Ju;Lee, Sang-Heon;Sohn, Myoung-Kyu
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.3
    • /
    • pp.135-138
    • /
    • 2014
  • This paper devices a facial expression recognition method robust to overfitting using 2D-DCT and EHMM algorithm. In particular, this paper achieves enhanced recognition performance by setting up a large window size for 2D-DCT feature extraction and extracting the observation vectors of EHMM. The experimental results on the CK facial expression database and the JAFFE facial expression database showed that the facial expression recognition accuracy was improved according as window size is large. Also, the proposed method revealed the recognition accuracy of 87.79% and showed enhanced recognition performance ranging from 46.01% to 50.05% in comparison to previous approaches based on histogram feature, when CK database is employed for training and JAFFE database is used to test the recognition accuracy.