• Title/Summary/Keyword: facial feature

Search Result 517, Processing Time 0.027 seconds

Effects of the facial expression presenting types and facial areas on the emotional recognition (얼굴 표정의 제시 유형과 제시 영역에 따른 정서 인식 효과)

  • Lee, Jung-Hun;Park, Soo-Jin;Han, Kwang-Hee;Ghim, Hei-Rhee;Cho, Kyung-Ja
    • Science of Emotion and Sensibility
    • /
    • v.10 no.1
    • /
    • pp.113-125
    • /
    • 2007
  • The aim of the experimental studies described in this paper is to investigate the effects of the face/eye/mouth areas using dynamic facial expressions and static facial expressions on emotional recognition. Using seven-seconds-displays, experiment 1 for basic emotions and experiment 2 for complex emotions are executed. The results of two experiments supported that the effects of dynamic facial expressions are higher than static one on emotional recognition and indicated the higher emotional recognition effects of eye area on dynamic images than mouth area. These results suggest that dynamic properties should be considered in emotional study with facial expressions for not only basic emotions but also complex emotions. However, we should consider the properties of emotion because each emotion did not show the effects of dynamic image equally. Furthermore, this study let us know which facial area shows emotional states more correctly is according to the feature emotion.

  • PDF

Realtime Facial Expression Recognition from Video Sequences Using Optical Flow and Expression HMM (광류와 표정 HMM에 의한 동영상으로부터의 실시간 얼굴표정 인식)

  • Chun, Jun-Chul;Shin, Gi-Han
    • Journal of Internet Computing and Services
    • /
    • v.10 no.4
    • /
    • pp.55-70
    • /
    • 2009
  • Vision-based Human computer interaction is an emerging field of science and industry to provide natural way to communicate with human and computer. In that sense, inferring the emotional state of the person based on the facial expression recognition is an important issue. In this paper, we present a novel approach to recognize facial expression from a sequence of input images using emotional specific HMM (Hidden Markov Model) and facial motion tracking based on optical flow. Conventionally, in the HMM which consists of basic emotional states, it is considered natural that transitions between emotions are imposed to pass through neutral state. However, in this work we propose an enhanced transition framework model which consists of transitions between each emotional state without passing through neutral state in addition to a traditional transition model. For the localization of facial features from video sequence we exploit template matching and optical flow. The facial feature displacements traced by the optical flow are used for input parameters to HMM for facial expression recognition. From the experiment, we can prove that the proposed framework can effectively recognize the facial expression in real time.

  • PDF

Facial Feature Verification System based on SVM Classifier (SVM 분류기에 의한 얼굴 특징 식별 시스템)

  • Park Kang Ryoung;Kim Jaihie;Lee Soo-youn
    • The KIPS Transactions:PartB
    • /
    • v.11B no.6
    • /
    • pp.675-682
    • /
    • 2004
  • With the five-day workweek system in bank and the increased usage of ATM(Automatic Toller Machine), it is required that the financial crime using stolen credit card should be prevented. Though a CCTV camera is usually installed in near ATM, an intelligent criminal can cheat it disguising himself with sunglass or mask. In this paper, we propose facial feature verification system which can detect whether the user's face can be Identified or not, using image processing algorithm and SVM(Support Vector Machine). Experimental results show that FAR(Error Rate for accepting a disguised man as a non-disguised one) is 1% and FRR(Error Rate for rejecting a normal/non-disguised man as a disguised one) is 2% for training data. In addition, it shows the FAR of 2.5% and the FRR of 1.43% for test data.

Realtime Facial Expression Data Tracking System using Color Information (컬러 정보를 이용한 실시간 표정 데이터 추적 시스템)

  • Lee, Yun-Jung;Kim, Young-Bong
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.7
    • /
    • pp.159-170
    • /
    • 2009
  • It is very important to extract the expression data and capture a face image from a video for online-based 3D face animation. In recently, there are many researches on vision-based approach that captures the expression of an actor in a video and applies them to 3D face model. In this paper, we propose an automatic data extraction system, which extracts and traces a face and expression data from realtime video inputs. The procedures of our system consist of three steps: face detection, face feature extraction, and face tracing. In face detection, we detect skin pixels using YCbCr skin color model and verifies the face area using Haar-based classifier. We use the brightness and color information for extracting the eyes and lips data related facial expression. We extract 10 feature points from eyes and lips area considering FAP defined in MPEG-4. Then, we trace the displacement of the extracted features from continuous frames using color probabilistic distribution model. The experiments showed that our system could trace the expression data to about 8fps.

Adaptive Facial Expression Recognition System based on Gabor Wavelet Neural Network (가버 웨이블릿 신경망 기반 적응 표정인식 시스템)

  • Lee, Sang-Wan;Kim, Dae-Jin;Kim, Yong-Soo;Bien, Zeungnam
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • In this paper, adaptive Facial Emotional Recognition system based on Gabor Wavelet Neural Network, considering six feature Points in face image to extract specific features of facial expression, is proposed. Levenberg-Marquardt-based training methodology is used to formulate initial network, including feature extraction stage. Therefore, heuristics in determining feature extraction process can be excluded. Moreover, to make an adaptive network for new user, Q-learning which has enhanced reward function and unsupervised fuzzy neural network model are used. Q-learning enables the system to ge optimal Gabor filters' sets which are capable of obtaining separable features, and Fuzzy Neural Network enables it to adapt to the user's change. Therefore, proposed system has a good on-line adaptation capability, meaning that it can trace the change of user's face continuously.

Emotion Recognition and Expression System of User using Multi-Modal Sensor Fusion Algorithm (다중 센서 융합 알고리즘을 이용한 사용자의 감정 인식 및 표현 시스템)

  • Yeom, Hong-Gi;Joo, Jong-Tae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.20-26
    • /
    • 2008
  • As they have more and more intelligence robots or computers these days, so the interaction between intelligence robot(computer) - human is getting more and more important also the emotion recognition and expression are indispensable for interaction between intelligence robot(computer) - human. In this paper, firstly we extract emotional features at speech signal and facial image. Secondly we apply both BL(Bayesian Learning) and PCA(Principal Component Analysis), lastly we classify five emotions patterns(normal, happy, anger, surprise and sad) also, we experiment with decision fusion and feature fusion to enhance emotion recognition rate. The decision fusion method experiment on emotion recognition that result values of each recognition system apply Fuzzy membership function and the feature fusion method selects superior features through SFS(Sequential Forward Selection) method and superior features are applied to Neural Networks based on MLP(Multi Layer Perceptron) for classifying five emotions patterns. and recognized result apply to 2D facial shape for express emotion.

Facial Age Classification and Synthesis using Feature Decomposition (특징 분해를 이용한 얼굴 나이 분류 및 합성)

  • Chanho Kim;In Kyu Park
    • Journal of Broadcast Engineering
    • /
    • v.28 no.2
    • /
    • pp.238-241
    • /
    • 2023
  • Recently deep learning models are widely used for various tasks such as facial recognition and face editing. Their training process often involves a dataset with imbalanced age distribution. It is because some age groups (teenagers and middle age) are more socially active and tends to have more data compared to the less socially active age groups (children and elderly). This imbalanced age distribution may negatively impact the deep learning training process or the model performance when tested against those age groups with less data. To this end, we propose an age-controllable face synthesis technique using a feature decomposition to classify age from facial images which can be utilized to synthesize novel data to balance out the age distribution. We perform extensive qualitative and quantitative evaluation on our proposed technique using the FFHQ dataset and we show that our method has better performance than existing method.

Face Detection Using Skin Color and Geometrical Constraints of Facial Features (살색과 얼굴 특징들의 기하학적 제한을 이용한 얼굴 위치 찾기)

  • Cho, Kyung-Min;Hong, Ki-Sang
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.12
    • /
    • pp.107-119
    • /
    • 1999
  • There is no authentic solution in a face detection problem though it is an important part of pattern recognition and has many diverse application fields. The reason is that there are many unpredictable deformations due to facial expressions, view point, rotation, scale, gender, age, etc. To overcome these problems, we propose an algorithm based on feature-based method, which is well known to be robust to these deformations. We detect a face by calculating a similarity between the formation of real face feature and candidate feature formation which consists of eyebrow, eye, nose, and mouth. In this paper, we use a steerable filter instead of general derivative edge detector in order to get more accurate feature components. We applied deformable template to verify the detected face, which overcome the weak point of feature-based method. Considering the low detection rate because of face detection method using whole input images, we design an adaptive skin-color filter which can be applicable to a diverse skin color, minimizing target area and processing time.

  • PDF

Realtime Face Recognition by Analysis of Feature Information (특징정보 분석을 통한 실시간 얼굴인식)

  • Chung, Jae-Mo;Bae, Hyun;Kim, Sung-Shin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.299-302
    • /
    • 2001
  • The statistical analysis of the feature extraction and the neural networks are proposed to recognize a human face. In the preprocessing step, the normalized skin color map with Gaussian functions is employed to extract the region of face candidate. The feature information in the region of the face candidate is used to detect the face region. In the recognition step, as a tested, the 120 images of 10 persons are trained by the backpropagation algorithm. The images of each person are obtained from the various direction, pose, and facial expression. Input variables of the neural networks are the geometrical feature information and the feature information that comes from the eigenface spaces. The simulation results of$.$10 persons show that the proposed method yields high recognition rates.

  • PDF

Wavelet based Feature Extraction of Human Face

  • Kim, Yoon-ho;Lee, Myung-kil;Ryu, Kwang-ryol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.05a
    • /
    • pp.656-659
    • /
    • 2001
  • Human have a notable ability to recognize faces, which is one of the most common visual feature in our environment. In regarding face pattern, just like other natural object, a geometrical interpretation of face is difficult to achieve. In this paper, we present wavelet based approach to extract the face features. Proposed approach is similar to the feature based scheme, where the feature is derived from the intensity data without detecting any knowledge of the significant feature. Topological graphs are involved to represent some relations between facial features. In our experiments, proposed approach is less sensitive to the intensity variation.

  • PDF