• 제목/요약/키워드: facial expression-classification

검색결과 62건 처리시간 0.037초

얼굴 특징 변화에 따른 휴먼 감성 인식 (Human Emotion Recognition based on Variance of Facial Features)

  • 이용환;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제16권4호
    • /
    • pp.79-85
    • /
    • 2017
  • Understanding of human emotion has a high importance in interaction between human and machine communications systems. The most expressive and valuable way to extract and recognize the human's emotion is by facial expression analysis. This paper presents and implements an automatic extraction and recognition scheme of facial expression and emotion through still image. This method has three main steps to recognize the facial emotion: (1) Detection of facial areas with skin-color method and feature maps, (2) Creation of the Bezier curve on eyemap and mouthmap, and (3) Classification and distinguish the emotion of characteristic with Hausdorff distance. To estimate the performance of the implemented system, we evaluate a success-ratio with emotional face image database, which is commonly used in the field of facial analysis. The experimental result shows average 76.1% of success to classify and distinguish the facial expression and emotion.

  • PDF

표정 HMM과 사후 확률을 이용한 얼굴 표정 인식 프레임워크 (A Recognition Framework for Facial Expression by Expression HMM and Posterior Probability)

  • 김진옥
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제11권3호
    • /
    • pp.284-291
    • /
    • 2005
  • 본 연구에서는 학습한 표정 패턴을 기반으로 비디오에서 사람의 얼굴을 검출하고 표정을 분석하여 분류하는 프레임워크를 제안한다. 제안 프레임워크는 얼굴 표정을 인식하는데 있어 공간적 정보 외시간에 따라 변하는 표정의 패턴을 표현하기 위해 표정 특성을 공간적으로 분석한 PCA와 시공간적으로 분석한 Hidden Markov Model(HMM) 기반의 표정 HMM을 이용한다. 표정의 공간적 특징 추출은 시간적 분석 과정과 밀접하게 연관되어 있기 때문에 다양하게 변화하는 표정을 검출하여 추적하고 분류하는데 HMM의 시공간적 접근 방식을 적용하면 효과적이기 때문이다. 제안 인식 프레임워크는 현재의 시각적 관측치와 이전 시각적 결과간의 사후 확률 방법에 의해 완성된다. 결과적으로 제안 프레임워크는 대표적인 6개 표정뿐만 아니라 표정의 정도가 약한 프레임에 대해서도 정확하고 강건한 표정 인식 결과를 보인다. 제안 프레임 워크를 이용하면 표정 인식, HCI, 키프레임 추출과 같은 응용 분야 구현에 효과적이다

Facial Expression Recognition Method Based on Residual Masking Reconstruction Network

  • Jianing Shen;Hongmei Li
    • Journal of Information Processing Systems
    • /
    • 제19권3호
    • /
    • pp.323-333
    • /
    • 2023
  • Facial expression recognition can aid in the development of fatigue driving detection, teaching quality evaluation, and other fields. In this study, a facial expression recognition method was proposed with a residual masking reconstruction network as its backbone to achieve more efficient expression recognition and classification. The residual layer was used to acquire and capture the information features of the input image, and the masking layer was used for the weight coefficients corresponding to different information features to achieve accurate and effective image analysis for images of different sizes. To further improve the performance of expression analysis, the loss function of the model is optimized from two aspects, feature dimension and data dimension, to enhance the accurate mapping relationship between facial features and emotional labels. The simulation results show that the ROC of the proposed method was maintained above 0.9995, which can accurately distinguish different expressions. The precision was 75.98%, indicating excellent performance of the facial expression recognition model.

컨볼루션 신경망 기반 표정인식 스마트 미러 (Smart Mirror for Facial Expression Recognition Based on Convolution Neural Network)

  • 최성환;유윤섭
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 춘계학술대회
    • /
    • pp.200-203
    • /
    • 2021
  • 본 논문은 여러 인공지능 기술 중 이미지 분류를 통한 사람의 얼굴 표정을 인식하는 프로그램을 통해 사람의 표정을 인식하여 거울에 나타내는 스마트미러 기술을 소개한다. 여러 사람의 5가지 표정이미지를 통하여 인공지능으로 학습하였고, 사람이 거울을 볼 때 거울이 그 표정을 인식하여 인식한 결과를 거울에 나타내는 방식이다. 여러 사람의 얼굴을 표정별로 구분되어있는 dataset을 kaggle에서 제공하는 fer2013을 이용하여 사용하였고, 이미지 데이터 분류를 위해 네트워크 구조는 컨볼루션 신경망 구조를 이용하여 학습하였다. 최종적으로 학습된 모델을 임베디드 보드인 라즈베리파이4를 통해서 얼굴을 인식하여 거울을 통해 디스플레이에 나타내는 구조이다.

  • PDF

A Review of Facial Expression Recognition Issues, Challenges, and Future Research Direction

  • Yan, Bowen;Azween, Abdullah;Lorita, Angeline;S.H., Kok
    • International Journal of Computer Science & Network Security
    • /
    • 제23권1호
    • /
    • pp.125-139
    • /
    • 2023
  • Facial expression recognition, a topical problem in the field of computer vision and pattern recognition, is a direct means of recognizing human emotions and behaviors. This paper first summarizes the datasets commonly used for expression recognition and their associated characteristics and presents traditional machine learning algorithms and their benefits and drawbacks from three key techniques of face expression; image pre-processing, feature extraction, and expression classification. Deep learning-oriented expression recognition methods and various algorithmic framework performances are also analyzed and compared. Finally, the current barriers to facial expression recognition and potential developments are highlighted.

얼굴 인식을 통한 동적 감정 분류 (Dynamic Emotion Classification through Facial Recognition)

  • 한우리;이용환;박제호;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제12권3호
    • /
    • pp.53-57
    • /
    • 2013
  • Human emotions are expressed in various ways. It can be expressed through language, facial expression and gestures. In particular, the facial expression contains many information about human emotion. These vague human emotion appear not in single emotion, but in combination of various emotion. This paper proposes a emotional expression algorithm using Active Appearance Model(AAM) and Fuzz k- Nearest Neighbor which give facial expression in similar with vague human emotion. Applying Mahalanobis distance on the center class, determine inclusion level between center class and each class. Also following inclusion level, appear intensity of emotion. Our emotion recognition system can recognize a complex emotion using Fuzzy k-NN classifier.

적응형 결정 트리를 이용한 국소 특징 기반 표정 인식 (Local Feature Based Facial Expression Recognition Using Adaptive Decision Tree)

  • 오지훈;반유석;이인재;안충현;이상윤
    • 한국통신학회논문지
    • /
    • 제39A권2호
    • /
    • pp.92-99
    • /
    • 2014
  • 본 논문은 결정 트리(Decision tree) 구조를 기반으로 한 표정 인식 방법을 제안한다. ASM(Active Shape Model)과 LBP(Local Binary Pattern)를 통해, 표정 영상들의 국소 특징들을 추출한다. 국소 특징들로부터 표정들을 잘 분류할 수 있는 판별 특징(Discriminant feature)들을 추출하고, 그 판별 특징들은 모든 조합의 각 두 가지 표정들을 분류시킨다. 분류를 통해 얻어진 정인식의 합을 통해, 정인식 최대화 기반 국소 영역과 표정 조합을 결정한다. 이 가지 분류들을 종합하여, 결정 트리를 생성한다. 이 결정 트리 기반 표정 인식률은 약 84.7%로, 결정 트리를 고려하지 않은 방법보다, 더 좋은 인식 성능을 보였다.

영상정보를 활용한 소셜 미디어상에서의 가짜 뉴스 탐지: 유튜브를 중심으로 (Fake News Detection on Social Media using Video Information: Focused on YouTube)

  • 장윤호;최병구
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제32권2호
    • /
    • pp.87-108
    • /
    • 2023
  • Purpose The main purpose of this study is to improve fake news detection performance by using video information to overcome the limitations of extant text- and image-oriented studies that do not reflect the latest news consumption trend. Design/methodology/approach This study collected video clips and related information including news scripts, speakers' facial expression, and video metadata from YouTube to develop fake news detection model. Based on the collected data, seven combinations of related information (i.e. scripts, video metadata, facial expression, scripts and video metadata, scripts and facial expression, and scripts, video metadata, and facial expression) were used as an input for taining and evaluation. The input data was analyzed using six models such as support vector machine and deep neural network. The area under the curve(AUC) was used to evaluate the performance of classification model. Findings The results showed that the ACU and accuracy values of three features combination (scripts, video metadata, and facial expression) were the highest in logistic regression, naïve bayes, and deep neural network models. This result implied that the fake news detection could be improved by using video information(video metadata and facial expression). Sample size of this study was relatively small. The generalizablity of the results would be enhanced with a larger sample size.

깊은 Convolutional Neural Network를 이용한 얼굴표정 분류 기법 (Facial Expression Classification Using Deep Convolutional Neural Network)

  • 최인규;송혁;이상용;유지상
    • 방송공학회논문지
    • /
    • 제22권2호
    • /
    • pp.162-172
    • /
    • 2017
  • 본 논문에서는 딥러닝 기술 중의 하나인 CNN(Convolutional Neural Network)을 이용한 얼굴 표정 인식 기법을 제안한다. 기존의 얼굴 표정 데이터베이스의 단점을 보완하고자 질 좋은 다양한 데이터베이스를 이용한다. 제안한 기법에서는 '무표정', '행복', '슬픔', '화남', '놀람', 그리고 '역겨움' 등의 여섯 가지 얼굴 표정 data-set을 구축한다. 효율적인 학습 및 분류 성능을 향상시키기 위해서 전처리 및 데이터 증대 기법(data augmentation)도 적용한다. 기존의 CNN 구조에서 convolutional layer의 특징지도의 수와 fully-connected layer의 node의 수를 조정하면서 여섯 가지 얼굴 표정의 특징을 가장 잘 표현하는 최적의 CNN 구조를 찾는다. 실험 결과 제안하는 구조가 다른 모델에 비해 CNN 구조를 통과하는 시간이 가장 적게 걸리면서도 96.88%의 가장 높은 분류 성능을 보이는 것을 확인하였다.

감정 분류를 이용한 표정 연습 보조 인공지능 (Artificial Intelligence for Assistance of Facial Expression Practice Using Emotion Classification)

  • 김동규;이소화;봉재환
    • 한국전자통신학회논문지
    • /
    • 제17권6호
    • /
    • pp.1137-1144
    • /
    • 2022
  • 본 연구에서는 감정을 표현하기 위한 표정 연습을 보조하는 인공지능을 개발하였다. 개발한 인공지능은 서술형 문장과 표정 이미지로 구성된 멀티모달 입력을 심층신경망에 사용하고 서술형 문장에서 예측되는 감정과 표정 이미지에서 예측되는 감정 사이의 유사도를 계산하여 출력하였다. 사용자는 서술형 문장으로 주어진 상황에 맞게 표정을 연습하고 인공지능은 서술형 문장과 사용자의 표정 사이의 유사도를 수치로 출력하여 피드백한다. 표정 이미지에서 감정을 예측하기 위해 ResNet34 구조를 사용하였으며 FER2013 공공데이터를 이용해 훈련하였다. 자연어인 서술형 문장에서 감정을 예측하기 위해 KoBERT 모델을 전이학습 하였으며 AIHub의 감정 분류를 위한 대화 음성 데이터 세트를 사용해 훈련하였다. 표정 이미지에서 감정을 예측하는 심층신경망은 65% 정확도를 달성하여 사람 수준의 감정 분류 능력을 보여주었다. 서술형 문장에서 감정을 예측하는 심층신경망은 90% 정확도를 달성하였다. 감정표현에 문제가 없는 일반인이 개발한 인공지능을 이용해 표정 연습 실험을 수행하여 개발한 인공지능의 성능을 검증하였다.